
Grant Agreement No.: 871808 
Research and Innovation action 
Call Topic: ICT-20-2019-2020: 5G Long Term Evolution 

 

 

INtelligent Security and PervasIve tRust for 5G and Beyond 

 

 

D3.2: Security drivers and associated software-defined models 

Version: v1.4 

Deliverable type R (Document, report) 

Dissemination level PU (Public) 

Due date 31/10/2021 

Submission date 05/11/2021 

Lead editor Edgardo Montes de Oca (Montimage) 

Authors Dhouha Ayed (TSG), Geoffroy Chollon (TSG), Nicolas Peiffer (TSG), Cyril 
Dangerville (TSG), Orestis Mavropoulos (CLS), Anastasios Kourtis (NCSRD), 
George Xilouris (NCSRD), Maria Christopoulou (NCSRD), Themistoklis 
Anagnostopoulos (NCSRD), Edgardo Montes de Oca (MI), Huu Nghia 
Nguyen (MI), Antonio Pastor (TID), , Juan Carlos Caja (TID), Vincent 
Lefebvre (TAGES), Chafika Benzaid (AALTO), Tarik Taleb (AALTO), Othmane 
Hireche (AALTO), Yongchao Dang (AALTO), Pol Alemany (CTTC), 
Charalampos Kalalas (CTTC), Ricard Vilalta (CTTC), Raul Muñoz (CTTC), 
Gürkan Gür (ZHAW), Wissem Soussi (ZHAW), Jordi Ortiz (UMU), Alejandro 
Molina (UMU), Rodrigo Asensio (UMU), Pawani Porambage (UOULU), 
Tharaka Hewa (UOULU), Aleksandra Podlasek (OPL), Rafał Artych (OPL) 

Reviewers Dhouha Ayed (TSG), Raul Muñoz (CTTC), Jean-Philippe Wary (Orange) 

Work package, Task WP3, T3.2  

Keywords Security policies, Security SLA, 5G security architecture, security 
management, security orchestration, secure network slices, service 
chaining, microservices, moving target defence, intrusion detection, 
intrusion prevention, monitoring, NFV, VNF, SDN, risk assessment 

 

Abstract 

This deliverable describes the results of Task “Software-defined models and tools to drive 5G Security” 
of the INSPIRE-5Gplus project that focused on identifying the list of governing models and enablers 
supporting software defined security required by 5G mobile networks. It provides the final version of 
the APIs that will be implemented by the tools developed or adapted by the different INSPIRE-5Gplus 
project partners. 

   



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 2 of 72 

Document revision history 

Version Date Description of change List of contributor(s) 

v0.1 MS 13/01/21 First version of MS4 with ToC (MS refers to 
Milestone) 

E. Montes de Oca (MI) 

v0.2 MS 30/04/21 Contributions from partners All authors 

v1.0 MS 31/05/21 Final version of MS4 E. Montes de Oca (MI) 

v0.2 15/07/21 Plans for D3.2  E. Montes de Oca (MI) 

v1.0 26/09/21 New main contributions: 
1 Introduction updated (MI) 
2.1 Introduction added (UMU) 
2.2 Modifications up to figure 4 (UMU) 
3.2 Some modifications (UMU, TSG) 
3.3.3 First paragraph added + several 
modifications in existing text (UMU) 
3.4 Extended and several modifications 
(NCSRD, CTTC, UOULU) 
3.5 Extended and several modifications (UMU) 
4.2 Extended and several modifications (MI) 
4.3 Extended and several modifications (UMU) 
4.4 Added (ZHAW) 
5.1 Extended and several modifications (MI) 
5.2 Extended and several modifications (OLP) 
6.1 Updated (UMU, TSG) 
6.4 Added (NCSRD) 
6.5 Updated (UOULU) 
6.7 Updated (CLS) 
6.8 Updated (UMU) 
6.9 Updated (MI) 
6.10 Added (OPL) 
6.11/6.12 Added (TID) 
6.13 Added (ZHAW) 
7 Added Conclusion (MI) 

8 Added Glossary (MI) 

All authors 

v1.0 26/10/21 Addressed comments and suggestions from 
internal reviewers 

All authors 

v1.1 28/10/21 Adapt to Deliverable template E. Montes de Oca (MI) 

v1.2 03/11/21 Final editing A. Köhler (Eures) 

v1.3 05/11/21 Final updates of Introduction and Conclusions 
section 

Dhouha Ayed (TSG) 

v1.4 22/02/23 Higher-quality versions of figures 18, 19, 27 
and 28 included 

Orestis Mavropoulos 
(CLS), Maria 
Christopoulou (NCSRD) 

 

 

 

  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 3 of 72 

List of contributing partners, per section 

Section number  Short name of partner organisations contributing 

Section 1  MI, TSG 

Section 2 UMU, MI, TSG 

Section 3 TSG, UMU, CTTC, NCSRD, AALTO, UOULU 

Section 4 TID, MI, ZHAW, NCSRD, OPL 

Section 5 TSG, UMU, CTTC, NCSRD, UOULU, CLS, MI, OPL, TID, ZHAW 

Section 6 MI, TSG 

 

 

Disclaimer 

This report contains material which is the copyright of certain INSPIRE-5Gplus Consortium Parties and 
may not be reproduced or copied without permission. 

All INSPIRE-5Gplus Consortium Parties have agreed to publication of this report, the content of which 
is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1. 

Neither the INSPIRE-5Gplus Consortium Parties nor the European Commission warrant that the 
information contained in the Deliverable is capable of use, or that use of the information is free from 
risk, and accept no liability for loss or damage suffered by any person using the information. 

 

 CC BY-NC-ND 3.0 License – 2019-2021 INSPIRE-5Gplus Consortium Parties 
 

 

Acknowledgment 

The research conducted by INSPIRE-5Gplus receives funding from the European Commission H2020 
programme under Grant Agreement No 871808. The European Commission has no responsibility for 
the content of this document.  

 

 

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 4 of 72 

Executive Summary 

This is a public deliverable that describes the results of the Task “Software-defined models and tools 
to drive 5G Security” carried out during the months starting from 5/2020 to 9/2021. The main objective 
is to define and develop advanced techniques for providing the enablers that support 5G Security. For 
this, the Task focuses on identifying, defining and developing the 5G security drivers (e.g., security 
policies and models), tools and techniques that include the development of modelling techniques for 
5G Software Defined Networks to improve automation and customisation of security management. 

Customisation allows the users and operators to specify the required security levels and the policies 
that need to be enforced in each network slice and for each vertical application. The specification of 
Security Service Level Agreements (SSLAs) corresponds to a formal way of expressing these 
requirements that allow automating their enforcement and assessment. Furthermore, the application 
of AI/ML techniques helps improve the automated management of the security breaches and 
prevention strategies, as well as the optimisation and coordination of the different security functions. 

An important enabler to achieve this enforcement and assessment is the monitoring of the different 
events that occur in the network, the system and the applications. Monitoring allows, for instance, 
verifying the integrity status of a 5G node, its installed software, its configurations, perform real-time 
assessment of SSLA conformance, and provide awareness in a complex dynamic and customised 
network environment.  

Another important aspect is the introduction of policy-driven enablers. Policy modelling is introduced 
for specifying high, mid and low-level security policies that contain the technical information needed 
to deploy the necessary elements, and, when combined with the sufficiently fine-grained monitoring 
capabilities, allow verify that the policies are respected and providing the enablers the enforce them 
through, for instance, the Security Orchestrators. Here we define and instrument a High-level Security 
Policy Language and Medium-level Security Policy Language that facilitate the orchestration and 
enforcement processes. 

Security Orchestration is defined to make it possible to manage 5G environments in multi-party and 
multi-domain contexts driven by the user defined security policies. It needs to interact with the security 
assets through the SDN Controllers and/or the NFV Orchestrators to guarantee that the security 
policies are correctly implemented by the network and functions. 

Finally, another aspect that is considered in this document are the optimization techniques that can 
be used to improve the performance of the security management processes. Here we present 
techniques for chaining of security services that can be used for considering different constraints and 
capabilities, e.g., enforcing SSLAs, guaranteeing a certain level of performance and scalability, 
providing more flexible maintenance, preventing or mitigate attacks and anomalies. Moving Target 
Defence is a technique that it also presented that allows preventing and countering security breaches 
by systematically, or when needed, to change the system to improve its resilience to attacks. 

The outcomes of this task are the specification of the Software-defined Models, the tools which will 
drive 5G security and make it adaptive, as well as the specification and development of the security 
extensions that make use of the devised models. It also allowed determining the impact on the 
orchestrators, policy and Slice managers. 

 

 

 

 

 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 5 of 72 

Table of Contents 

Executive Summary ...................................................................................................................... 4 

Table of Contents ......................................................................................................................... 5 

List of Figures ............................................................................................................................... 7 

List of Tables ................................................................................................................................ 8 

Abbreviations ............................................................................................................................... 9 

1 Introduction ................................................................................................................. 11 

2 Security policies and models ......................................................................................... 14 

2.1 High-level Security Policy Language for Orchestration Policies (HSPL-OP) ........................... 14 

2.2 Medium-level Security Policy Language for Orchestration Policies (MSPL-OP) .................... 15 

2.3 Translation between models ................................................................................................. 16 

2.4 Policy Refinement .................................................................................................................. 17 

2.5 Policy Translation ................................................................................................................... 18 

3 Security management ................................................................................................... 22 

3.1 Overall security management process .................................................................................. 22 

3.2 SSLA Management ................................................................................................................. 23 

3.2.1 SSLA Refinement ............................................................................................................ 24 

3.3 Security orchestration ........................................................................................................... 27 

3.3.1 Security orchestration capabilities ................................................................................ 28 

3.3.2 Security orchestration based on SSLAs ......................................................................... 28 

3.3.3 Security orchestration based on Security Policies ......................................................... 29 

3.4 Secure Slice Management ..................................................................................................... 31 

3.4.1 Security SLA ................................................................................................................... 31 

3.4.2 Slice brokering ............................................................................................................... 33 

3.5 Conflict and Dependency detection ...................................................................................... 35 

3.6 Threat Assessment ................................................................................................................. 37 

4 Automated detection and enforcement ........................................................................ 42 

4.1 Model-driven data management for security monitoring and detection ............................. 42 

4.2 Rule and RT-SSLA conformance ............................................................................................. 43 

4.3 Policy enforcement function ................................................................................................. 49 

4.4 Security orchestration with MTD policy enforcement .......................................................... 50 

4.5 Katana Slice Manager ............................................................................................................ 51 

4.5.1 Generalization of NEST/GST 3GPP template ................................................................. 52 

4.5.2 Slice Mapping and Scheduling components of KATANA extension to support MTD .... 53 

4.5.3 Monitoring mechanisms for network slices that are shared by different tenants/service
 ....................................................................................................................................... 53 

4.6 Optimisation based on chaining and microservices .............................................................. 56 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 6 of 72 

4.6.1 Chaining of virtualised security functions, micro-services, and VNFs ........................... 56 

4.6.2 Security by Orchestration for optimizing the placement of Vertical applications ........ 57 

5 Specification of the enablers’ APIs ................................................................................ 61 

5.1 Security Orchestrator (TSG, UMU) ........................................................................................ 61 

5.2 SSLA Manager (TSG)............................................................................................................... 62 

5.3 Secured Network Slices for SSLA (CTTC) ................................................................................ 62 

5.4 Katana Slice Manager (NCSRD) .............................................................................................. 62 

5.5 SFSBroker (UOULU) ................................................................................................................ 62 

5.6 DiscØvery (CLS) ...................................................................................................................... 63 

5.7 Policy Framework (UMU) ....................................................................................................... 63 

5.8 Security Monitoring Framework (MI) .................................................................................... 64 

5.9 Security by Orchestration for MEC (OPL) .............................................................................. 65 

5.10 I2NSF IPSEC (TID) ................................................................................................................... 66 

5.11 MTD Controller (ZHAW) ......................................................................................................... 67 

5.12 Virtual Channel Protection (TSG) ........................................................................................... 68 

6 Conclusions .................................................................................................................. 69 

References ................................................................................................................................. 71 

 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 7 of 72 

List of Figures 

Figure 1: Mapping of enablers, APIs and HLA elements ....................................................................... 13 

Figure 2: MSPL-OP main elements ........................................................................................................ 15 

Figure 3: HSPL to MSPL translation ....................................................................................................... 16 

Figure 4: Policy Refinement example .................................................................................................... 18 

Figure 5: Policy Translation example .................................................................................................... 19 

Figure 6: Policy type and trigger TOSCA grammars .............................................................................. 20 

Figure 7: Security-focused placement example .................................................................................... 20 

Figure 8: Example translation HSPL -> MSPL -> TOSCA ......................................................................... 21 

Figure 9: WS-Agreement model ............................................................................................................ 24 

Figure 10: NIST SP 800-53 Security Controls ......................................................................................... 24 

Figure 11: Security Metrics ................................................................................................................... 24 

Figure 12: Example of an MSPL template defining the minimal AES key size ...................................... 26 

Figure 13: Example of a mapping between a high-level security property AAL and a lower-level 
configuration of the Authentication part of the DataProtection policy in the MSPL ........................... 27 

Figure 14: SSLA-based enabler selection process ................................................................................. 29 

Figure 15: E2E orchestration workflow ................................................................................................. 30 

Figure 16: "Secured Network Slices for SSLA" internal architecture. ................................................... 33 

Figure 17: SFSBroker architecture ......................................................................................................... 34 

Figure 18: Threat assessment model using DiscØvery .......................................................................... 38 

Figure 19: Elicited threats using DiscØvery's dataset ........................................................................... 40 

Figure 20: Model-driven data management components .................................................................... 43 

Figure 21: An example of an RT-SSLA rule to detect the isolation level between slices ...................... 44 

Figure 22: An example of a complete XML specification ...................................................................... 45 

Figure 23: TOSCA/YAML for deploying a WordPress content management system monitored by MMT
 ............................................................................................................................................................... 49 

Figure 24: Policy enforcement concept ................................................................................................ 50 

Figure 25: MTD actions at different layers of the infrastructure .......................................................... 51 

Figure 26: Network slice creation request ............................................................................................ 52 

Figure 27: Grafana dashboard for a deployed slice by Katana ............................................................. 54 

Figure 28: Grafana home dashboard .................................................................................................... 55 

Figure 29: OpenNetVM architecture ..................................................................................................... 56 

Figure 30: Example of a service chain ................................................................................................... 57 

Figure 31: Model of 5G and beyond computing infrastructure ............................................................ 58 

Figure 32: Simple example of MEC infrastructure topology ................................................................. 59 

Figure 33: Security by Orchestration and Inspire-5Gplus architecture ................................................ 60 

Figure 34: NETCONF based XML model to add a IPSec entry into the security agent .......................... 67 

file://///rotorua.eurescom.eu/eps/DOCUMENT/UH/P_INSPIRE-5Gplus/Deliverables/D3.2_5G%20Security%20drivers%20and%20associated%20software-%20defined%20models/i5-D3.2_5G%20Security%20drivers%20and%20associated%20software-defined%20models_v1.4.docx%23_Toc127976550
file://///rotorua.eurescom.eu/eps/DOCUMENT/UH/P_INSPIRE-5Gplus/Deliverables/D3.2_5G%20Security%20drivers%20and%20associated%20software-%20defined%20models/i5-D3.2_5G%20Security%20drivers%20and%20associated%20software-defined%20models_v1.4.docx%23_Toc127976565
file://///rotorua.eurescom.eu/eps/DOCUMENT/UH/P_INSPIRE-5Gplus/Deliverables/D3.2_5G%20Security%20drivers%20and%20associated%20software-%20defined%20models/i5-D3.2_5G%20Security%20drivers%20and%20associated%20software-defined%20models_v1.4.docx%23_Toc127976576


D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 8 of 72 

List of Tables 

Table 1: HSPL-OP - MSPL-OP Capability mapping example .................................................................. 17 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 9 of 72 

Abbreviations 

AAL  Authentication Assurance Level 

AES  Advanced Encryption Standard 

AI/ML  Artificial Intelligence / Machine Learning 

API  Application Programming Interface 

DC  Datacentres 

DPI  Deep Packet Inspection 

DTLS  Datagram Transport Layer Security 

E2E  End to end 

ECC  Elliptic Curve Cryptography 

ECDSA  Elliptic Curve Digital Signature Algorithm 

ETSI  European Telecommunications Standards Institute 

GPU  Graphical Processing Unit 

GSMA  Global System for Mobile Communications 

GST  Generic Network Slice Template 

HIDS  Host-based Intrusion Detection System 

HLA  High Level Architecture 

HSM  Hardware Security Module 

HSPL-OP  High-level Security Policy Language – Orchestration Policy 

I2NSF  Interface to Network Security Functions 

IETF  Internet Engineering Task Force 

IPSec  Internet Protocol Security 

KPIs  Key Performance Indicators 

MANO  Management and Orchestration 

MEC  Multi-Access Edge Computing 

MEC RA  Multi-Access Edge Computing Reference Architecture 

MILP  Mixed-Integer Linear Programming 

MS  Milestone 

MSPL-OP  Medium-level Security Policy Language – Orchestration Policy 

MVNO  Mobile Virtual Network Operator 

NEST  NEtwork Slice Type 

NFs  Networking Functions 

NFV  Network Function Virtualization 

NFVM  Network Function Virtualization Manager 

NFVO  NFV Orchestrator 

NIST  National Institute of Standards and Technology 

NSB  Network Slice Brokering 

NSSI  Network Slice Subnet Instance 

OASIS  Organization for the Advancement of Structured Information Standards 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 10 of 72 

OGF  Open Grid Forum 

ONAP  Open Network Automation Platform 

OSSEC  Open-Source Host-based Intrusion Detection System SECurity 

OTT  Over-The-Top media service 

PCD  Policy Conflict Detector 

RAM  Read Access Memory 

RAN  Radio Access Network 

RT-SSLA  Real-time SSLA 

RX/TX  Transmit and Receive 

SAD  Security Association Database 

SC  Service Consumer 

SFC  Service Function Chaining 

SDN  Software-Defined Networking 

SFs  Security Functions 

SFSBroker Secure and Federated Network Slice Broker 

SLA  Service Level Agreement 

SLOs  Security Service Level Objectives 

SMD  Security Management Domain 

SP  Service Provider 

SPD  Security Policy Database 

SPECS  Secure Provisioning of Cloud Services based on SLA management 

SSLA  Security Service Level Agreement 

RT-SSLA Runtime monitoring Security Service Level Agreement 

TEE  Trusted Execution Environment 

TOSCA  Topology and Orchestration Specification for Cloud Applications 

vCPU  virtual Central Processing Unit 

VIM  Virtualized Infrastructure Management 

VNF  Virtualized Network Function 

VSF  Virtual Security Function 

WS-
Agreement 

 Web Services Agreement Specification 

XML  Extensible Markup Language 

XSLT  Extensible Stylesheet Language Transformations 

ZSM  Zero-touch network and Service Management 

 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 11 of 72 

1 Introduction  

Software-defined models and tools correspond to a mayor trend that is driving 5G Security. They are 
the basis for defining and developing advanced techniques for providing the enablers that support 
smart (i.e., intelligent, adaptive, flexible and automated) 5G Security. This deliverable focuses on 
identifying, defining and developing the 5G security drivers based on security policies and models, 
tools and techniques related to software-based networks and that include: 

• Modelling techniques for 5G Software Defined Networks to improve automation and 
customisation of security management; 

• Security policy modelling at various levels of abstraction and their usage to deploy the 
necessary elements to enforce the required security level at various domains and to verify that 
they are respected; 

• Security Service Level Agreements (SSLAs) modelling and formalisation and customisation 
mechanisms for specific vertical slices based on security policies and SSLAs;  

• Security orchestration methods and techniques to allow an automatic and autonomous 
management of 5G environments in multi-party and multi-domain contexts through security 
policies and to optimize the provisioning, the sharing (between different tenants) and the 
chaining of virtualised security functions, micro-services, and virtualised network functions; 

• Definition of a monitoring framework to verify the integrity status of a 5G node, its installed 
software, its configurations, and real-time assessment of SSLA conformance and also to 
provide awareness comprising customised VNFs and dynamism; 

• Usage of AI to improve the automated management of the security breaches and prevention 
strategies; 

• Definition of policy enforcement functions that implement the way the policies are deployed 
and are integrated in the system as drivers that communicate with final security and network 
assets (e.g., SDN Controllers or NFV Orchestrators); 

• Definition of optimization techniques for chaining of security services depending on various 
constraints (i.e., security and performance constraints); 

• Support of dynamic adaptation of chains to prevent or mitigate attacks and anomalies. 
 

By Software-defined models we mean models that enable the software-based configuration and 
control of the network functions (NF) and particularly of the Virtualised Network Functions (VNF). 

Policy orchestration models allow high-level, mid-level and low-level specification of policies 
containing the technical information needed to deploy the necessary elements, enforce the policies, 
and verify that they are respected. The Security Orchestrator manages the policies to cover the 
different Security Management Domains. Policies can reach intermediate levels as SDN Controllers, or 
the NFV Orchestrators that are responsible for controlling and managing the NFV infrastructure, or 
they can arrive to final security asset as low-level policies (e.g., configuration).  

In order to reach the listed objectives, the Task 3.2 related to this deliverable has focused on identifying 
the models and the enablers that build the security architecture defined in INSPIRE-5Gplus project and 
support the test cases that have been defined.  

In particular, the following enablers are covered in this document (see WP3 enablers detailed in D3.1 
[11]): 

1. Security Orchestrator (SO): enabler that enforces security policies by deploying, configuring 
the security functions and network, and interacting with the VIM or MANO orchestrators, and 
SDN controllers. 

2. Policy Framework (PF): specifies security policies that will regulate the slicing configurations, 
service chaining, security prevention and remediation strategies, etc. It allows the modelling 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 12 of 72 

and management of the policy rules, policy conflict detection, policy storage, translation of 
policies to lower-level representations.  

3. Security Service Level Agreement (SSLA) Manager: manages the security requirements defined 
by the SSLAs during the full life-cycle of a Slice.  

4. Security Slice Manager (SSM): enables the creation of multiple virtual networks on top of a 
physical architecture, allowing operators to provide portions of their networks that fit with the 
requirements (particularly security) coming from different vertical industries and service 
providers (e.g., mobile virtual network operator, MVNO). This enabler encompasses 3 enablers 
that were considered as separate in D3.1 [11]: the SFS Broker providing secure slice brokering 
capabilities, the Secured Network Slice Manager for SSLAs providing slice management based 
on SSLAs, and the KATANA Slice manager that implements security policy enforcement 
capabilities based on slice management.     

5. Threat Assessment (TA): A graphical enabler that analyses the security posture of a system 
6. Security Monitoring Framework and RT-SLA (SMF): tools for capturing security related 

information from the network, system and applications, and correlating and analysing this 
information to detect security breaches or vulnerabilities by assessing, for instance Real Time 
SSLA. 

7. Moving Target Defence (MTD): aims at dynamically modifying (parts of) the infrastructure or 
their fingerprint to make it hard for an attacker to exploit vulnerabilities, e.g., the network’s 
topology to make eavesdropping on specific traffic more difficult. 

8. Virtual Channel Protection (VCP): a policy enforcement function enabler that represents a 
(D)TLS proxy.  

9. I2NSF-IPSec: a policy enforcement function enabler that represents an Interface to Network 
Security Functions - Internet Protocol Security. 

The other enablers related to WP3 (mainly those providing AI/ML analysis and management 
capabilities) will be detailed in deliverables D3.3 and D3.4 [1]. 

Figure 1 shows the coverage of the enablers with respect to the High-Level Architecture (HLA) specified 
in D2.2 [2]. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 13 of 72 

 

Figure 1: Mapping of enablers, APIs and HLA elements  

The column in the middle lists the enablers described in this document and how they map to the HLA 
elements of one domain. Several enablers can correspond to one element since they cover different 
aspects of the elements’ functions. This is notably the case for the Policy and SSLA management, and 
the orchestrator. An enabler can also cover more than one HLA element since it integrates several 
functions. This is the case for the Monitoring Framework that consists of probes that collect data and 
a centralised module that manages the probes and analyses the information they provide (e.g., RT-
SSLA assessments).  

In order to reach the listed objectives, the document is structured as follows: 1) the definition of the 
security policies and models that allow specifying user requirements, how these can be converted 
from high level requirements defined by users to low level machine actionable configurations and 
procedures; 2) the definition of the complete security management process that enables protect-
detect-react closed loop automation based on security orchestration and SSLAs and security policies 
management in a Slice; 4) the definition of the models and techniques that enable automated 
detection, protection, and optimised security enforcement; 5) A specification of a first version of the 
APIs that need to be implemented so that the different tools can interact and take advantage of the 
security models and mechanisms to construct a fully automated end-to-end multi-tenant smart 
network and service security management framework across multi-domains.  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 14 of 72 

2 Security policies and models 

New 5G infrastructures are characterised by dynamic deployments of heterogeneous devices, 
functions and applications that must be constantly configured, secured and managed. In that sense, 
the traditional management approach, where a system administrator deals with every single 
configuration, is not sufficient. Policy-based approaches are able to well-define a common way to 
represent different kind of requirements, providing a level of abstraction that homogenizes the 
management and allows consistency verifications. Different policy designs and specifications focusing 
on different scopes have emerged and evolved along the years but only some of them already cover a 
wide set of security aspects. In order to ease security management, automation, deployment and 
configurations for different scopes, INSPIRE-5GPlus extends the multi-level abstraction approach and 
capabilities defined in ANASTACIA-H2020 [3]. Specifically, High-level Security Policy Language 
Orchestration Policy models (HSPL-OP) and Medium-level Security Policy Language Orchestration 
Policy models (MSPL-OP) are extended and adapted to be applied in the new INSPIRE-5GPlus 
orchestration and enforcement processes, which allow enforcing and managing HSPL-OP and MSPL-
OP in multi-domain ZSM-aligned infrastructures. 

2.1 High-level Security Policy Language for Orchestration Policies (HSPL-OP) 

The High-level Security Policy Language for Orchestration Policies (HSPL-OP) [4] models high-level 
security requirements, priorities and dependencies in form of high-level orchestration security policies, 
which are disassociated from underlying technologies, e.g., “Bob is authorized to access Internet traffic 
once he has been authenticated”. The HSPL-OP scheme is used to codify security requirements in XML. 
This scheme provides different elements for modelling security policies based on different capabilities 
such as authorization, monitoring, channel protection and operation, among others. In this way, an 
HSPL Orchestration Policy is mainly composed of an action (e.g., do not authorize access) that must be 
performed for a specific subject (e.g., Bob) and for a specific object (e.g., Internet traffic), but it also 
allows the modelling of conditional fields to customize other parameters (e.g., time period) as well as 
the specification of priorities and dependencies between policies or dependencies between policies 
and the system. It can be specified by the following elements: 

[ subject ] [action] [object] [ extra_fields ] [ dependencies ] [priority] 

The action element is an enumeration associated with the subject and the object representing the type 
of action to be performed (e.g., authorise access). It provides multiple actions according to different 
security capabilities (e.g., authorise access, do not authorise access, protect confidentiality, configure 
monitoring). Also, the object element is an enumeration that represents a conceptual object or target 
(e.g., Internet traffic, authentication traffic, resource). The extra fields element allows customizing 
high-level policies by indicating values such as time period, target, purpose and resource. Time period 
defines the amount of time the security policy must be enforced by the system. Target specifies the 
policy target (e.g., Authentication Agent). And finally, purpose and resource fields allow specifying 
additional information about the purpose and the resource involved in the policy (e.g., update a 
specific resource). These fields also allow modelling multiple properties, consisting of sets of key/value 
pairs instead of a single string value. Regarding the orchestration features, the priority element 
provides a priority rank to be considered during the policy orchestration. In this way, the Security 
Orchestrator will consider those policies with the highest priority first. The dependencies element 
provides a list of dependencies that must be satisfied before processing the security policy. This field 
considers dependencies between security policies as well as dependencies between security policies 
and system events (Event-Condition-Action). Finally, a bi-directional attribute eases the auto-
generation of multiple medium-level security policies during the refinement process, in case the same 
policy must be enforced in a bi-directional way. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 15 of 72 

2.2 Medium-level Security Policy Language for Orchestration Policies (MSPL-
OP) 

The Medium-level Security Policy Language for Orchestration Policies (MSPL-OP) [5] allows modelling 
more technical information in the form of medium-level orchestration security policies. These policies, 
although less abstract, are still independent of the underlying infrastructure. Thus, they allow 
representing information like IP addresses or protocols without specifying the final configurations for 
specific end-points. As for HSPL-OP, MSPL-OP specifies priorities and dependencies to enhance the 
orchestration features. 

Figure 2 shows a simplified 
representation of the main components 
of an MSPL Orchestration Policy. The “IT 
Resource Orchestration” element 
represents the MSPL-OP. It can be 
composed of one or multiple “IT 
Resources” (MSPL) elements. “IT 
Resource” elements contain a 
“Configuration” and one or more 
“Dependencies”. They can also indicate 
“Enabler Candidates”. Priorities between 
policies are specified as an attribute of 
the “ITResources”. “Rule Set 
Configuration” extends a “Configuration” 
and represents multiple “Capabilities” as 
well as multiple “Configuration Rules”. On 
the one hand, “Capability” elements 
represent main security functionalities 
such as resource authorisation, filtering 
or channel protection. In this way, 
capabilities play a key role as the first step 
for deciding a suitable enforcement point. 
To enforce a specific security policy, the 
enforcement point must implement the 
required capability. For instance, filtering 
capability could be enforced by 
enforcement points that implement 
traffic filtering features, such as IPTABLES 
or SDN management. On the other hand, 
each “ConfigurationRule” models 
different “ConfigurationRuleAction” 
elements and “ConfigurationRuleCondition” elements. This approach extends the policy language by 
providing new capabilities, including new actions and conditions for them. 

Regarding dependencies, the “Policy Dependency” and “Event Dependency” elements extends the 
“Dependency” element, depending on the nature of the required dependency. “Policy Dependency” 
indicates that a security policy depends on a specific status of another security policy (e.g., a security 
policy requires that another security policy be enforced before). “Event Dependency” specifies that the 
security policy depends on a specific event triggered by the system (e.g., an authorisation security 
policy may depend on an authentication success event). Finally, each extended MSPL policy composing 
the MSPL Orchestration Policy may include an “Enabler Candidate” list that indicates the potential 
enforcement points candidates that could be considered for enforcing the security policy.  

Figure 2: MSPL-OP main elements 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 16 of 72 

In order to allow enforcing SSLAS as well as new security capabilities across the INSPIRE5G-Plus HLA, 
previous models need to be extended. To this aim, new fields are being defined according to the SSLA 
requirements, for instance, monitoring policies have been extended to provide counting capabilities, 
so traffic can be measured and controlled. This is performed by providing count and threshold new 
elements to the monitoring configuration condition that allows specifying generic values such as the 
measures unit, the value and the range (e.g., 60 connections per hour, 60 seconds per day...). Besides, 
to ease the policy enforcement in the ZSM 5G infrastructures, models have been also extended to 
specify multi-tenant and multi-domain information that allows traceability during the policy 
orchestration and enforcement processes (e.g., Tenant and management domain id fields). Of course, 
beyond policies model extension, policy transformation processes also need to be improved to allow 
E2E policies enforcement since previous work only contemplates single domains. 

2.3 Translation between models 

While policy models provide a well-defined common way to represent different requirements, this 
approach requires additional processes to translate these policy models into final infrastructure 
configurations. Depending on the policy models abstract level, this policy transformation can be 
composed by multiple operations. Since INSPIRE-5GPlus extends a multi-level approach to provide 
different levels of abstraction, multiple policy transformation operations are required. Specifically, the 
extended security policies have 2 levels of abstraction, High-level Security Policy Language for 
Orchestration Policies (HSPL-OP) and Medium-level Security Policy Language for Orchestration Policies 
(MSPL-OP). The process that transforms HSPL-OP into MSPL-OP is denominated policy refinement, 
whereas the process that transforms MSPL-OP into final infrastructure configurations is denominated 
policy translation. Figure 3 shows the mapping of these processes in the INSPIRE-5GPlus High-level 
architecture. 

 

 

Figure 3: HSPL to MSPL translation 

In INSPIRE-5GPlus, the refinement process is mainly performed at E2E level (it could also be done at 
the SMD level by SMD security administrators) whereas the policy translation is performed at SMD 
level. Since security policies must be enforced across multiple domains, HSPL-OP will be refined into 
different MSPL-OP that will be sent to each involved SMD. Then, each SMD will translate the MSPL-OP 
to final configurations in order to enforce them across the SMD infrastructure. Since the MSPL-OP 
provides more information (but still independent of the final configurations) it is also suitable to be 
generated by the Decision Engine to request the enforcement of reactive countermeasures. This is 
performed at both levels depending on the required scope of the reaction (intra domain or inter 
domain). Thus, E2E level is also able to receive MSPL-OP policies and orchestrate between the SMDs. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 17 of 72 

The policy-based orchestration processes that manages policy refinements and translations are 
explained in Section 3.3.3. 

2.4 Policy Refinement 

In INSPIRE-5GPlus, HSPL-OP are intended to be applied at E2E SMD level to ease the specification of 
security policies even for non-technical users through a GUI form with a reduced number of fields. This 
level of abstraction cannot be enforced directly due to the lack of information for the system; thus, a 
policy refinement process is required as part of the E2E Orchestration. When the E2E SMD Policy 
Framework receives a HSPL-OP, it identifies the capabilities needed to enforce each HSPL policy that 
composes the HSPL-OP. A well-defined capability matching between the HSPL-OP fields will provide 
the required capability.  

 

Action Object Capability 

no_authorise_access *traffic FILTERING 

no_authorise_access Resource AUTHORISATION 

prot_conf_integr *traffic CHANNEL_PROTECTION 

config_monitoring *traffic TRAFFIC_ANALYSIS 

Table 1: HSPL-OP - MSPL-OP Capability mapping example 

Table 1 shows a simplified example of this matching. As it can be seen in this example, different 
combinations of the HSPL-OP fields will generate different capabilities. Once the capabilities have been 
identified, a capability-based refinement process starts. To this aim, the refiner implements a MSPL-
OP skeleton generator as well as N refinement methods, where N represents the number of available 
capabilities. Each method implements the logic on how to generate the MSPL-OP parameters 
according to the identified capability and the HSPL-OP fields. To this aim, data services are essential to 
retrieve information about management domain infrastructure, as well as about the HSPL-OP fields 
since some methods will generate different MSPL parameters according to this information. For 
instance, a channel protection MSPL will have different parameters depending on the security level 
required, the network and the nature of the subject and the target (e.g., constrained devices could 
require DTLS whereas regular devices could use IPSec). When each MSPL has been generated, the 
MSPL-OP skeleton is filled, also including (if any) the HSPL-OP dependencies and priorities. 

Figure 4 shows an example of channel protection HSPL-OP refinement. In this case, according to the 
HSPL-OP parameters, the capability matching identifies channel protection capability. To model the 
common MSPL E2E channel protection parameters, another matching is performed in order to find 
common channel protection properties among the channel protection information of each involved 
management domain available in the data services. In this example, the matching between both 
Security Management Domain channel protection information selects the IPSec protocol with a 
specific crypto-suite common to both Security Management Domains. If there is no common channel 
protection solution the process will notify it to the security administrator.  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 18 of 72 

 

Figure 4: Policy Refinement example 

The amount of MSPLs generated inside the MSPL-OP will vary depending on HSPL-OP refinement 
method implementation as well as on specific parameters (e.g., the “bidirectional” parameter will 
generate two MSPLs to cover both traffic directions). Besides, the E2E Security Orchestrator could 
request multiple refinements for the same MSPL-OP in order to generate multiple MSPL-OP to enforce 
them across the required Security Management Domains. This Refinement procedure is triggered by 
sending corresponding HSPL-OP to h2eservice at Policy Framework which will use h2mservice to 
perform the refinement. 

2.5 Policy Translation 

Unlike the refinement process that can be performed at the E2E SMD level and at the SMD level to 
refine high-level policies into medium level policies, the policy translation process is only performed at 
the SMD level to translate MSPL-OP into specific configurations of the infrastructure as part of the 
SMD orchestration. In fact, the process occurs once the SMD Security Orchestrator has selected 
suitable assets to enforce the MSPL-OP. Thus, the SMD Policy Framework receives a MSPL-OP and a 
list of the assets able to enforce each MSPL. The Policy Framework then starts the translation process 
which dynamically loads a translator plug-in for each tuple <MSPL, selected asset>, and executes it to 
get all the required low-level configurations. The plug-in approach provides a scalable and easy way to 
introduce new assets in the policy-based approach just by implementing a well-defined method in an 
isolated piece of code that will be loaded dynamically. In this way, each plug-in will be in charge of 
implementing the logic to translate the MSPL into the final configurations, and use the libraries 
provided by the policy framework such as the access management to the data services in order to 
retrieve the required information about the infrastructure to perform the translation. This Translation 
procedure is triggered by sending corresponding MSPL-OP to m2eservice at Policy Framework which 
will use m2lservice to perform the translation. 

Figure 5 shows an example of a translation from MSPL-OP to I2NSF controller IPSec configurations. 
Details of the API for this enabler are available at Section 5.10. In this case, the plug-in builds a skeleton 
of the IETF IPSec model that is able to provide the channel protection information for the IPSec Security 
Association Database (SAD) and the Security Policy Database (SPD). The MSPL-OP is then processed in 
order to extract the required values. Any missing values (or default values) can be retrieved from the 
data services in order to complete the translation. 

 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 19 of 72 

 

Figure 5: Policy Translation example 

It must be noted that it is important to consider that the final configurations provided during the 
translation process are not only intended for configuring the final devices or security tools but also 
other platforms and controllers. For instance, in order to interoperate with open-source VIM 
orchestrators, the MSPL-OP can be translated to a language supported by them such as TOSCA 
(Topology and Orchestration Specification for Cloud Applications) supported by ONAP. TOSCA is a 
standard defined by OASIS [6] that allows specifying the topology of the network services and 
components, relationships between them, and the management processes.  

The TOSCA meta-model is based on service topology templates that describe cloud workloads 
corresponding to a graph of node modelling components and of relationship modelling relations 
between them. The node and relationship types also define the life-cycle of operations to implement 
the behaviour a VIM orchestration engine will invoke when instantiating a service template. For 
instance, a create operation can indicate to the VIM orchestrator to create an instance of a component, 
a start or stop operation can serve to trigger these events. The operations are grouped as scripts that 
specify the actual behaviour required. The VIM orchestration will use these scripts to manage the 
components during runtime. The relationship between components serve to order the component 
instantiations.  

The TOSCA basic profile defines node and relationship types that need to be supported, e.g., Compute 
node, Network node, and Database node types. Additional types can be defined for customizing and 
extending existing types. The policy type and trigger grammars are depicted in Figure 6.  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 20 of 72 

 

Figure 6: Policy type and trigger TOSCA grammars 

TOSCA includes policy types related to placement, scaling, updating, and performance, and can be 
extended from the tosca.policies.Root, the default TOSCA policy type from which all other policy types 
are derived. Thus, the TOSCA model can be extended with security policies that can add security 
aspects, such as regulatory compliance, data retention, isolation, and security-focused placement. An 
example described in [10] is depicted in Figure 7. 

 

 

Figure 7: Security-focused placement example 

Thus, the security policies can correspond to a TOSCA extension. They can be event-based but also 
related to access control, life cycle, etc. Translating MSPL to TOSCA provides a form understandable 
by the VIM orchestrator or tools able to perform the policy enforcement. The following simple example 
(Figure 8) illustrates how HSPL is instantiated to MSPL and translated to TOSCA. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 21 of 72 

 

Figure 8: Example translation HSPL -> MSPL -> TOSCA 

 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 22 of 72 

3 Security management 

The formalisms presented in the previous Section 2 allow define the policies that can be acted on, but, 
for this, one needs to understand and specify how the security breach detections need to be managed 
as well as what strategies need to be performed for mitigating, countering or even preventing them. 
In this Section we first give an overall view of the management process, and then present the 
management of SSLAs, the role of the security orchestrators, and the management of network slices. 
We then present how to deal with conflicts between the platform and services, and the security 
functions. Finally, we present the threat assessment process. 

3.1 Overall security management process 

The complexity of the 5G architecture has introduced disruptive concepts and technologies for which 
the resulting risks are yet not fully known, e.g., softwarisation, virtualisation, and cloudification. These 
innovative technologies have positively impacted the flexibility and adaptive capabilities of networks. 
Nevertheless, security management requires a significant level of situation awareness and is sensitive 
to the increased complexity and dynamicity introduced by the novel concepts. 

The integration of disruptive technologies requires, on the one hand, to secure these technologies. On 
the other hand, these technologies should be applied for security purposes in order to obtain benefit 
from them and reach consistency with system properties. In order to reach the required scalability and 
dynamism levels of security, security services should follow, as much as possible, the “as-a-service” 
model that includes virtualisation and software-defined control. Management and control of security 
should remain aligned to these innovative paradigms to obtain what can be called smart orchestration 
that considers chaining and AI as the enablers for providing an intelligent distribution of security 
functions across the systems and domains. Dynamic and intelligent orchestration is essential for 
implementing a “protect-detect-react” loop that ensures compliance with security policies and 
Security Service Level Agreements (SSLAs), optimizes the detection of anomalies and known attacks, 
and dynamically triggers the required mitigation actions.  

The deliverable D2.2 [2] describes a fully automated end-to-end smart network and service security 
management framework across multi-domains by detailing the main functional blocks and their role 
in enabling intelligent closed-loop security operations. Here, we briefly describe the building blocks 
related to the security management that are essential for the automation of the closed loop. In 
particular, the enablers that provide dynamic orchestration of security and ensure that the provided 
security is compliant with the expected SSLAs, security policies and regulatory requirements. The AI 
security management enablers will be detailed in D3.3 and D3.4 [1].  

The complete protect-detect-react closed loop automation can be seen as follows: 

 

(1a) – The initial E2E SSLA / Security Policy can be defined by the operator’s security 
administrator or an external entity (e.g., OTT) requesting secure services from the operator. 

Or 

(1b) – The Security Policy can also be received from the E2E Decision Engine.  

(2) After checking for potential conflicts and/or impossibility of fulfilment, the E2E Policy & 
SSLA Management module communicates the requested E2E SSLA/Security Policy to E2E 
Security Orchestrator for enforcement. 

(3 – 4) The E2E Security Orchestrator relies on E2E Policy & SSLA Management services to 
refine the E2E SSLA /Security Policy, providing medium-level description of the E2E policy and 
its mapping to domain-level policies. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 23 of 72 

(5 – 6) Each domain receives its corresponding domain-level policy that will first be checked 
for potential conflicts and/or impossibility of fulfilment by the Policy & SSLA Management 
module before being transmitted to the Security Orchestrator for enforcement. 

(7 – 8) – The Security Orchestrator relies on Policy & SSLA Management services to refine the 
domain-level policy into low-level actions that can be enforced on the domain infrastructure. 

(9 – 10) Depending on the situation (e.g., the security awareness provided by monitoring 
functions), the security policies can be enforced directly on the resources (e.g., configuration 
of new rules on a deployed virtual Firewall, load balancer, traffic splitter, or monitoring probe) 
or via the Unified Security API offered by the network/service orchestration services (e.g., 
instantiation of a new security VNFs, service chaining, reconfiguration of a VNF or network 
Slice). 

3.2 SSLA Management 

SSLAs (Security Service Level Agreements) have been defined and are being used in two different 
approaches. One is to manage the security requirements in a Slice, and the other is to assess the 
security properties using monitoring techniques during runtime, called RT-SSLAs. The objective is to 
manage the security requirements, defined by the SSLAs, during the full life-cycle of a Slice by: a) 
gathering the verticals/end-users security requirements; b) deploying the necessary security controls 
to enforce the agreed SSLA by enriching or configuring the services of the Service Providers (SPs) 
services; c) real-time assessment of RT-SSLAs using monitoring techniques to detect that the security 
functions are working as expected and that there are no security breaches; d) detecting violations in 
security provisioning level based on an analytic engine and notifying both end-users and SPs; and e) 
enabling the automation of reaction strategies in real-time to adapt the provided level of security or 
to trigger proper countermeasures. 

In order to automate the security life cycle of a Slice, a machine-readable SSLA format is adopted based 
on the SPECS [7] SSLA model that is extended to support slicing and security orchestration in the 5G 
context. This extension introduces security-related information allowing to specify the following 
Sections in a Slice term description:  

• Slice resource providers that describe the available infrastructure of the resource providers 
(appliances, networks, etc.); 

• Security capabilities required in a Slice. A capability is defined as a set of security controls. In 
our case, the NIST’s Control Framework [8] is used to specify these security controls; 

• Security metrics referenced in the Slice service properties and used to define Security Service 
Level Objectives (SLOs) in the guarantee terms Section. A metric specification includes 
information about it and also information to process the SLOs, such as the metric name and 
definition, its scale of measurement, and the expression used to compute its value. Section 4.2 
provides more details on the SSLAs defined for real-time assessment. 

The SSLA model is an extension of the WS-Agreement model standardized by the Open Grid Forum 
(XML based and formally defined by an XML schema). The data model is depicted by the following 
Figure 9. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 24 of 72 

 

Figure 9: WS-Agreement model 

For example, if we consider a web application server with DoS mitigation capability, we can consider 
the Security Controls from the NIST SP 800-53 for such capability shown in Figure 10. 

 

Figure 10: NIST SP 800-53 Security Controls 

And the following Security Metrics shown in Figure 11. 

 

Figure 11: Security Metrics 

An example of Security Mechanism may be a combination of the OSSEC open source HIDS solution for 
the DoS detection and a custom script for the actual mitigation measure that, for instance, shuts down 
attacked ports or blacklists source IP addresses. 
 
In order to assess the security properties using monitoring techniques during runtime, low level 
security property rules can be specified and/or derived from the MSPLs previously discussed. This is 
presented in Section 4. 
 
SSLAs may be managed by the SSLA manager presented in Section 62 

3.2.1 SSLA Refinement 

The goal of SSLA refinement is to tune the input policy (MSPL) to the Security Orchestrator (SO) - 
described in the next Section - according to the SSLA, so that the security system (or system of systems) 
deployed by the SO meets the SLOs (Service Level Objectives) defined in the SSLA, and especially that 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 25 of 72 

the proper monitoring enablers are in place to detect any RT-SSLA violation at runtime in case a change 
of the state of the system occurs.  
The refinement process assumes that there is a catalogue of available Services on which SSLAs can 
apply (referenced in the ServiceDescriptionTerm element); and it also assumes that for each such 
Service, there exists a corresponding MSPL template, pre-defined by the Service Provider (SP). Each 
capability defined in the SSLA should match a capability of one of the <ITResource>s in the MSPL policy. 
Indeed, some initial policy (MSPL in this case) information is necessary in addition to the SSLA as 
primary input. Because on the one hand, the SSLA defines agreements only on high-level service 
properties (functional or non-functional) that the SP exposes to the Service Consumer (SC), i.e., the 
ones that the SP is willing to negotiate with the SC. In fact, there will be very likely only a subset of all 
negotiable properties in a SSLA because the SC cares only about some of them usually. Also, the SSLA 
does not care about the how, i.e., how the SLOs will be met, implemented or monitored. On the other 
hand, the MSPL policy gives details about the how by defining the IT resource or the composition of IT 
resources (with dependencies, etc.) - security enablers - that the service is composed of, with an 
exhaustive set of all the configuration properties required to configure each security enabler, 
regardless of whether the properties are present in the SSLA or not. 
 
At the abstract level, the SSLA refinement process has two effects on the MSPL policy: 

1. Restrict the range of possible values of properties in the MSPL. For example, the MSPL 
DataProtection policy may allow ECDSA keys of any ECC curve and any length for 
authentication, but the SSLA requires specific NIST curves and key lengths of 256 bits and 
above to comply with a specific regulation. The SSLA may fix a single value in some cases, e.g., 
the AES key size must be 256 bits. 

2. Add the necessary monitoring resources (<ITResource>s) to the MSPL in order to monitor the 
SSLA metrics with regards to the SLOs, especially for non-functional properties which do not 
map to any configuration property in the MSPL.  

 
Since SSLAs come in XML form (based on WS-Agreement specification) the refinement could be 
supported by XSLT since this is the standard way of transforming XML data into another text form like 
MSPL (which is also defined in XML). When writing the MSPL template, the author must identify 
whether and how each SLO in the SSLA can be translated into one or more configuration properties in 
the MSPL <ITResource>s, and write the corresponding XSLT rule in the template, in place of the values 
of these configuration properties. However, the SSLA refinement process is not only about text 
transformation. To fill those MSPL fields that cannot be inferred directly from the SSLA (e.g., context 
specific values), the process will need to retrieve the required information from the data services. 
 
The following example shows an excerpt (simplified) of the MSPL template (XSLT stylesheet) defining 
a one-to-one mapping between the SSLA-defined minimal AES key size for the pre-shared key, actually 
defined in an SLO min_dtls_aes_key_size (referring to a metric aes_key_size) associated to a Security 
Gateway Service with DTLS capability; and the MSPL-defined value of a Confidentiality property of the 
DTLS proxy (ITResource)’s DataProtection policy: 
 

<?xml version="1.1" encoding="UTF-8"?> 
<xsl:stylesheet version="3.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
                xmlns:mspl="http://modeliosoft/xsddesigner/a22bd60b-ee3d-425c-8618-
beb6a854051a/ITResource.xsd" 
                xmlns:xslt="http://www.w3.org/1999/XSL/Transform" 
                xpath-default-namespace="http://www.w3.org/2005/xpath-functions" 
                xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
<xsl:template match="/"> 
... 
<!— Only the part in red is a change to this MSPL template. —> 
<ITResourceOrchestration ...> 

<ITResource ...> 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 26 of 72 

<configuration xsi:type='RuleSetConfiguration'> 
        <capability> 
            <Name>DTLS_protocol</Name> 
        </capability> 

<configurationRule> 
<configurationRuleAction xsi:type='DataProtectionAction'> 
             <technology>DTLS</technology> 

<technologyActionSecurityProperty 
xsi:type='Confidentiality>           
  <encryptionAlgorithm>AES</encryptionAlgorithm> 

<!— Extract the Key size value from the input SSLA 
document (XSLT input) here, more precisely the SLO with attribute 
SLO_ID min_dtls_aes_key_size —> 

 <keySize><xsl:value-of 
select=”//specs:SLO[@SLO_ID=’min_dtls_aes_key_size’]/spec
s:SLOexpression/specs:oneOpExpression/specs:operand” 
/></keySize> 

         ... 
     </technologyActionSecurityProperty> 
</configurationRuleAction> 

... 
</configurationRule> 

... 
</configuration> 

</ITResource> 
... 
</ITResourceOrchestration> 
... 
</xsl:template> 
</xsl:stylesheet> 

Figure 12: Example of an MSPL template defining the minimal AES key size 

 

The part in red creates a value from the value of a node in the SSLA XML document using XPath 
expression (look for the SLO element with SLO_ID min_dtls_aes_key_size, get the 
SLOexpression/oneOpExpression/operand child element in it). 
 
The following example (Figure 13) shows a more complex mapping between a SSLA-defined high-level 
security property AAL (Authentication Assurance Level as defined in NIST SP 800-63) and a lower-level 
configuration of the Authentication part of the DataProtection policy in the MSPL, depending on the 
value of the AAL (showing only the relevant part of the MSPL template), i.e., if AAL is lower than 3, we 
use simple pre-shared key for authentication, else we use public keys (or certificates) with HSM-
generated/owned and PIN-protected private key. 
 

<configurationRuleAction xsi:type='DataProtectionAction'> 

<technology>DTLS</technology> 
<xsl:variable name="aal " 
select="//specs:SLO[@SLO_ID=’dtls_aal’]/specs:SLOexpression/specs:oneOpExpression/specs:operan
d”" /> 

<technologyActionParameters> 

... 

<authenticationParameters> 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 27 of 72 

<xsl:choose> 

  <xsl:when test="aal &lt; 3"> 

    <psKey_value>mypk</psKey_value> 

    ... 

  </xsl:when> 

  <xsl:otherwise> 

    <keyId>dtls_auth_key</keyId> 

    <hsmProtection>true</hsmProtection> 

    <!— 4-digit PIN —> 
<pin><xsl:value-of select=”ceiling(1000 + (8999 * random-number-
generator()?number))” /></pin> 

  </xsl:otherwise> 

</xsl:choose>  

</authenticationParameters> 
</technologyActionParameters> 
... 

<technologyActionSecurityProperty xsi:type='Authentication'> 

<xsl:choose> 

  <xsl:when test="aal &lt; 3"> 

<peerAuthenticationMechanism>preshared_key</peerAuthenticationMechanism> 

  </xsl:when> 

  <xsl:otherwise> 

<peerAuthenticationMechanism>raw_public_key</peerAuthenticationMechanism> 

  </xsl:otherwise> 

</xsl:choose>   

</technologyActionSecurityProperty> 

</configurationRuleAction> 

Figure 13: Example of a mapping between a high-level security property AAL and a lower-level configuration of 
the Authentication part of the DataProtection policy in the MSPL 

Although XSLT is recommended here as template language and requires an XSLT engine, other non-
XSLT-based yet XML-friendly template engines might be used for simple use cases (Freemarker, 
Velocity, etc.). 

Certain service properties in the SSLA - metrics - are non-functional and may not correspond to specific 
configuration properties of the security (enforcement) enablers (ITResources in the MSPL), in which 
case the MSPL template should also include <ITResource>s for monitoring enablers that are capable of 
measuring these metrics regularly (frequency to be defined) and detect a deviation from the SLO. For 
example, in a SSLA that refers to a Security Gateway Service with DTLS capability with support for PSK 
(pre-shared key) and certificate authentication, such a metric could be the mean time to react to 
(remediate) a key compromise; in more concrete terms, how much time does it take to notify/alter 
whomever should be informed, and change (remove, re-distribute, etc.) pre-shared keys or private 
keys (and revoke certificates) and the DTLS communication to be re-established with the new keys, 
after a key compromise is detected. 

3.3 Security orchestration 

The overall 5G architecture relies on the composition of modular systems and services that must be 
mission-aware but also security-aware. For this, the security orchestration is needed to meet 
user/client expectations, policies and regulations. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 28 of 72 

Security policy orchestration is raising numerous challenges. One challenge is related to the definition 
of the policies and SSLAs themselves. Particularly, it is important determining how to declare those 
policies and SSLAs, how to compute compliant resources and services respecting the policy constraints. 
Another challenge is related to the deployment of the security enforcement strategies, i.e., 
determining how to schedule and guarantee the availability of the security functions and associated 
resources. Furthermore, interoperability and combination of the various authority perimeters is 
required to ensure global security. On the other hand, smart protection deployment, smart detection 
deployment, smart remediation strategies will greatly benefit from the flexibility offered by 
orchestration. 

3.3.1 Security orchestration capabilities 

As detailed in Section 5.1 of D3.1 [11] various orchestration solutions are provided by management 
platforms for clouds and networks, but there is a need for a dedicated Security Orchestrator for 
enabling support of a fine-grained and end-to-end security deployment and configuration. The 
capabilities of a such orchestrator are the following:  

• The ability to provide a holistic view on end-to-end security at a vertical level (for example, 
security deployment and configuration at the network l, IT or application levels). 

• Full automation of the deployment control and configuration of all security functions in a 
highly dynamic environment. 

• The ability to interact with each level of orchestration according to the security orchestration 
needs. 

• The ability to align the security policies in an automated way inside of a domain and inter-
domain context. 

• The consideration of the specified SSLAs to orchestrate security according security policies and 
requirements.  

• Full automation of the selection of security services/VSFs to be orchestrated based on an 
automated catalogue. 

3.3.2 Security orchestration based on SSLAs 

The SSLA selection process (as shown in Figure 14) consists of retrieving, for each capability described 
in the SSLA file, a list of enablers from the catalogue supporting all the metrics marked with a "HIGH" 
priority. Indeed, since the metrics can be associated with three different priority levels (“HIGH”, 
“MEDIUM” or “LOW”), it seems logical to select only the enablers supporting all the metrics with the 
highest priority level. Nevertheless, we have chosen to classify the enablers according to the other 
supported metrics, favouring the greatest number of metrics with “MEDIUM” priority implemented, 
then the greatest number of metrics with “LOW” priority. The Figure shows the result of the selection 
before the enablers are sorted. 

 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 29 of 72 

 

Figure 14: SSLA-based enabler selection process 

Thus, this first selection remains effective, in the sense that only the enablers that comply correctly 
with the critical points are chosen without becoming too drastic and filtering only the enablers which 
implement all the metrics correctly, in which case it would not be obvious to always find it. Indeed, we 
want to avoid cases where the result of the selection would be an empty set of enablers. 

In addition, we can notice here that only the capabilities (as defined by NIST) are considered. A more 
exhaustive work taking into account the security controls (as also defined by NIST) will have to be 
developed at the future using a new model. 

3.3.3 Security orchestration based on Security Policies 

Policy-based security orchestration allows orchestrating security requirements from well-defined 
security policies. This approach allows managing security on complex and heterogeneous 5G 
infrastructures by homogenizing final configurations in security policies that provide multiple level of 
abstractions as the ones provided in Section 2. Besides, a well-defined policy-based approach 
significantly improves the consistency of the system through different conflict detection and 
dependencies processes. Since the INSPIRE-5GPlus architecture extends the ZSM approach, it must be 
considered not only with respect to intra domain policy-based orchestration, but also with respect to 
E2E policy-based security orchestration. 

Figure 15 shows the main workflow for E2E Orchestration, which includes inter/intra domain 
orchestration. When the E2E orchestrator receives a HSPL Orchestration Policy (HSPL-OP) (1), a 
preliminary high-level conflict detection process is performed to verify if there is any issue at E2E level 
(2). If the high-level policies composing the HSPL-OP policy do not generate conflicts, the E2E 
orchestrator identifies the required capabilities with the support of the policy framework (3), as well 
as the involved domains with the support of the System Model which is mapped to data services (4) 
that contain the required information like the SMD where the affected devices/services are connected 
to. Once the involved domains have been identified, the E2E orchestrator retrieves the endpoint 
information for each one of them (5). If the capability requires some common parameters (e.g., 
channel protection capability requires that both end points implement the same channel protection 
technology), the E2E orchestrator requests the available parameters for each involved domain (6) and 
looks for a common solution (7). If there is a common solution, the E2E Orchestrator requests a 
customized HSPL-OP refinement to the Policy Framework (8). This refinement process generates MSPL 
Orchestration policies from HSPL Orchestration (9) policies as it has been explained on Section 2.3. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 30 of 72 

Depending on the implementation, some steps of the E2E policy refinement, part of the E2E 
Orchestration process, could be performed by the policy refiner (inside of the Policy Framework) to 
lighten the load of the E2E Security Orchestrator. Once the E2E Security Orchestrator receives the 
MSPL-OP, it orchestrates an enforcement plan. To this aim, it identifies the enforcement domain for 
each security policy since the enforcement domain could be different from the targeted domain (e.g., 
a filtering policy for a specific subject could be enforced in the transport domain instead of in the 
management domain where the subject belongs to). Then, it sorts the plan according to the security 
policies’ priorities, managing the dependencies if any (10). Those policies that contain unsolved 
dependencies are queued until the proper event triggers the enforcement, whereas those policies that 
are ready to be enforced are introduced into the enforcement plan ordered according to the defined 
priorities. Finally, the E2E Security Orchestrator requests the policies’ enforcement to the different 
Management Domains according to the enforcement plan.  

 

Figure 15: E2E orchestration workflow 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 31 of 72 

When a Management´s Domain Security Orchestrator receives a MSPL-OP enforcement request (11), 
it verifies that the new policies will not generate any conflict according to the current domain policies 
and infrastructure (12). In that case, the Security Orchestrator orchestrate the enforcement of the 
MPLS-OP (13), this is, it decides the best asset to perform the enforcement. To this aim, the 
orchestration algorithm retrieves the available candidate assets from the domain data services, and 
starts an allocation optimization process which decides a suitable policy enforcement point according 
to the available asset plug-ins (that contains the logic to translate MSPL-OP to specific configurations 
for the specific asset), the security policy information, data services information, and the allocation 
algorithm. The latter is also considered since different allocation algorithms can be provided to cover 
different approaches. For instance, if the infrastructure does not have NFV-MANO features, or new 
deployments are restricted an algorithm which only looks for enforcing policies in the most suitable 
allocation place among the already deployed/existing assets can be selected, otherwise, if the 
infrastructure allows dynamic deployments, advanced optimization algorithms such as weight-based, 
scored, greedy, Mixed-Integer Linear Programming, ant colony-based or deep-learning-assisted can be 
applied. It is important to highlight that during the orchestration process, multiple conflict verifications 
can be performed for ensuring that selected security enablers and allocation resources are fully 
compliant with the security policy requirements More information regarding intra domain policy 
orchestration and enforcement can be found in [5]. After the orchestration process, translation 
process (explained in Section 2) and enforcement process (explained in Section 4.3) are performed. It 
is important to highlight that part of the process will not only be executed proactively but also 
reactively. For instance, as part of a countermeasure or when an event solves any policy dependency 
that triggers a reactive policy enforcement. Among this Software Defined process, the APIs described 
in Section 5.7 are used for communicating the enablers. In particular, the E2E SO receives the HSPL-OP 
at e2eheservice and it uses h2eservice at the E2E Policy Framework to perform the refinement. Once 
MSPL-OPs are ready, the E2E SO uses the meservice to perform the enforcement at the SO SMD. The 
SMD SO uses the mcdtservice to detect conflict and dependencies and then the m2eservice, both at 
the Policy Framework, to perform the translation process to final-asset configuration.  

3.4 Secure Slice Management 

Network Slicing have been studied during the last years as it is seen as a key concept for network 
management. While there are multiple works done on the design, development and management of 
Network Slices, the security on Network Slicing is a path to be researched with many possibilities. 
INSPIRE-5Gplus is investigating two aspects related to the security and the management of network 
Slices: Security SLA and slice brokering. 

3.4.1 Security SLA 

The use of SSLAs allows defining a set of objectives to be monitored that should lead to the detection 
of attacks targeting the deployed network Slices and rise alarms to notify what is happening and, if 
necessary, apply the appropriate actions to counteract to the current attack and prevent similar ones 
or at least reduce their negative effects. 

Based on some of the research done [12] in the context of the INSPIRE-5Gplus project, this Section 
presents an initial draft of how the deployment relationship of Network Slices and SSLA should be. And 
once deployed, the steps to perform for the SSLA monitoring. In order to apply these two actions 
(deployment and monitoring), two data objects are necessary: 

1. NEtwork Slice Type (NEST): describes how a set of Network Services are interconnected among 
them to create the logical network for to offer the requested service. 
The NEST complements the slice creation request that a user sends to the Slice Manager to 
deploy a new slice. In this context, GSMA has published the NG.116 – Network Slice Template 
v2.0 specifications [9] that define the Generic Network Slice Template (GST), a set of attributes 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 32 of 72 

that characterize a network slice type. GST is generic and is not tied to any specific network 
deployment. In effect, the NEST is a GST filled with values in order to fulfil a given set of 
requirements derived from a network slice use case. The Slice Mapping process then parses 
the NST, which define the Network Slice Subnet Instances (NSSIs) that shall be deployed as 
part of the slice. 

2. SSLA descriptor: defines the set of Key Performance Indicators (KPIs) and the Service Level 
objectives (SLOs) that define the QoS for the deployed Network Slice. 
Having these two data objects, the process to deploy a Network Slice with a set of monitored 
security KPIs should follow the steps described in the next procedure: 

1. To request to the NFV Orchestrator (NFVO) the instantiation of the services using 
virtual elements over a set of computing resources  

2. To request to the SDN controllers the creation of the connectivity services across 
networking resources. 

3. To request the SSLA configuration, this action has a set of sub-steps: 
a. The deployment of its associated Security Functions (SFs) to add the security 

expected. 
b. The configuration of the SFs to deliver the necessary information to be 

monitored. 
c. The configuration of the monitoring system to receive the data from the SFs, 

analyse it and decide if an SSLA is being respected. 
With the Network Slice deployed, the next phase on its life-cycle is the monitoring of those 
KPIs defined in the SSLA. This procedure follows the next steps: 

1. Based on their configuration, the SFs gather the information necessary for the 
monitoring system. 

2. The gathered information is compared with the SLO and metrics (i.e., they are the 
threshold references). Here two options are possible: 

a. The SSLA is NOT violated, so no control and management action is required. 
b. The SSLA is violated, it is necessary to apply a solution to bring the 

monitoring KPIs within the accepted threshold values defines in the SSLA. At 
this point different options are available to solve an SSLA violation; re-
configuring the SFs, apply a scale-in/out or scale-up/down of the resources, 
etc. The final solution depends on the set of policies available and associated 
to solve each SSLA. 

3. Finally, once the SSLA is solved, the Network Slice monitoring should be back at a 
normal status until its next violation or the end of its life-cycle. 

As a result, the minimum set of operations that need to be supported by the Slice Manager are the 
following: 

• Network Slice Instance Creation 

• Network Slice Subnet Instance Creation 

• Network Slice Instance Termination 

• Network Slice Subnet Instance Termination 

• Network Slice Instance Modification 

• Network Slice Subnet Modification 

 

Based on the above, the Slice Manager should provide the following features: 

• Slice Mapping:  
This process selects the infrastructure resources for a new slice based on the NEST. It should 
also enable NSSIs to be shared among slices that run concurrently. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 33 of 72 

• Slice Monitoring: 
This process monitors the health and status of the deployed network slices and sends status 
messages to the MANO components. 

• Interface with MANO Components: 
The Slice Manager should support essential connectivity with the MANO components. 

In the context of the INSPIRE-5Gplus project, a new enabler called “Secured Network Slices for SSLA” 
is designed and being developed in order to associate SSLAs at a Network Slice level and so, to apply 
certain security requirements to the deployed service. This enabler is placed in the E2E Security 
Management Domain within the INSPIRE-5Gplus HLA. 

This enabler aims to take care of the following functions: a) to enforce the association of Network 
Slices and SSLAs by offering the available SSLAs in the SSLA manger together with the NSTs in the 
DataBase (DB), b) to manage the deployment and termination of Network Slice Instances (NSIs) based 
on the available NSTs by requesting the corresponding slice-subnets with SSLA to the Security 
orchestrator (SO) through MSPL policies. 
  
As illustrated in Figure 16, this enabler is composed by seven modules: 

• Main: contains the API and the configuration files to set up the enabler. A more detailed 
description of the API can be found in Section 62. 

• Secured Slices Manager: manages the deployment of the Secured NST with the associated 
SSLA. 

• Slice_2_mspl: takes care to convert the requests NST+SSLA data object to an MSPL object for 
the SO. 

• Secured NST: Database (DB) with the available Network Slice Templates (NST) to be deployed. 

• Secured NSI: DB with the Network Slice instances (NSI) deployed/terminated. 

• SSLAMngrmapper: in charge to pass any associated SSLA request to the SSLA Mngr. 

• SOMapper: in charge to pass any associated MSPL request to the SO. 
 

 

Figure 16: "Secured Network Slices for SSLA" internal architecture. 

3.4.2 Slice brokering 

In 5G, network Slice brokering (NSB) is introduced as a new business model for dynamic network 
sharing wherein a logically centralized entity named as Slice broker governs the secure and privacy 
preserved resource trading between network operators/service providers at one end, and multiple 
network tenants at the other end. Apart from facilitating on-demand resource allocation, the Slice 
broker performs admission control based on traffic monitoring and forecasting, and mobility 
management based on a global network view.  

The business model of NSB was initially proposed for on-demand multi-tenant network architecture. 
NSB is proposed as a centralized mediator and a controlling entity to provide admission control for the 
incoming resource requests. As the initial business scenarios, it has identified few main use cases such 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 34 of 72 

as sharing a common RAN by multiple core networks, enhancing coverage by operator collaboration, 
sharing network coverage and spectrum, and sharing a common core network by multiple RANs. In 
addition to given scenarios, there are many other possibilities that require the sharing of cloud 
resources for storage and computational processes. Establishing network slices need to be performed 
dynamically and suitable to the service requirements. With respect to the 3GPP specifications, NSB is 
responsible for three main tasks: On demand resource allocation; Based on the traffic monitoring and 
traffic forecasting, controlling network admission; Allocate resources to the network tenants. In order 
to provide an uninterrupted service, NSB needs to maintain the synchronization with slice 
orchestration, slice managers as well as the service level agreement (SLA) manager. 

When the consumer is eligible to acquire network and computational resources from multiple resource 
providers, the respective network slice should be formulated as federated slice. In such a scenario, the 
role of NSB is significant to act as a mediator and a controlling entity between the resource requester 
and multiple network operators or cloud service providers.  

In the context of INSPIRE-5Gplus, a security enabler is presented for slice brokering, named as, Secure 
and Federated network Slice Broker (SFSBroker). The security enabler is developed as a blockchain 
service and mapped as a Slice Service in the End-to-End Management Functions in INSPIRE-5Gplus HLA. 
SFSBroker facilitates the tenants to selects the optimum network slice from the Mobile Network 
Operators (MNOs) for a resource request and utilizes a game theory-based algorithm encoded as smart 
contracts for the selection algorithm.  

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 17, SFSBroker is running as a blockchain service and consisting of four modules (i.e., 
prime mover, mediator, global slice manager, security manager) which are implemented as separate 
smart contracts and integrated later. When a tenant resource request is sent (Step 1) to SFSBroker, it 
is accepted and processed to a network slice blue print by Prime Mover module of SFSBroker. Then 
the NS blue print is sent (Step 2) to Mediator which runs the slice selection algorithm based on the 
resource requirements, resource availability and unit price available in the database (Step 3).The data 
base is updated as an independent process from the resource requests, where the regular statistics 
regarding the resource availability and the prices are retrieved from there source providers or mobile 
network operators (MNOs).Once the Mediator decides the formation of federated network slice 
template (NST), it is created by the Global Slice Manager with the participation of the respective slice 

Figure 17: SFSBroker architecture 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 35 of 72 

managers of MNOs (Step 5). Security manager is responsible for identifying and mitigating the security 
attacks that may occur on SFSBroker.  

SFSBroker blockchain service is implemented in hyperledger fabric and the selection algorithm is 
encoded in Java-based smart contracts. IoT tenants and MNOs are connected with SFSBroker using 
MQ Telemetry Transport (MQTT). Security Service Blockchain (SSB) [13] is integrated with Security 
Manager to verify the resource requests and MNO offers. APIs are described in Section 5.5. 

3.5 Conflict and Dependency detection 

This Section considers the risks of potential conflicts between inconsistent platform and service 
provisioning and security functions. Nowadays networks have become incredibly complex and diverse. 
In 5G, multiple of thousands of devices are interconnected belonging to different technologies, where 
an automatic and optimized response to events and the adaptation to system and device capabilities 
is required to ensure the proper behaviour of authorized devices. In this context, Inspire5G presents a 
policy-based framework to exploit the maximum performance of Software Defined Network and 
Network Function Virtualization. Fully aware of the context, the 5G infrastructure by using a well-
defined policy procedure, is capable of self-healing, and self-repairing; detecting and mitigating 
possible inconsistencies in the system. Policies abstracts complexity from underlying layers, and allow 
the definition of rules that must be accomplished within and for the system to ensure the intended 
behaviour. 

Prior to enforcing new security policies in the system, it is fundamental to detect any potential 
incompatibility, contradiction or dependency with the current status of the infrastructure. To this aim, 
the INSPIRE-5GPlus Policy Framework security enabler provides the Policy Conflict Detector module by 
extending previous approaches [15] to deal with conflicts at E2E Management Domain level as well as 
Management Domain level. This module implements a rule engine that processes the requested 
security policies against a set of rules and a base of knowledge (facts). Starting from a well-known set 
of rules, organisations can extend and customize them according to the conflicts and dependencies 
they want to detect. Besides, new rules could be added dynamically as part of reactive processes. 

The following snippet shows a rule example (duties conflict). The logic rules are formed by antecedent, 
that represents rule conditions, and the consequent that will be performed when the antecedent is 
fulfilled. Thus, only when the conditions are met, the consequent is triggered. The rules make 
reference security policies statements as well as elements provided by data services such as 
information about the infrastructure. Besides, when a consequent is triggered, it is also considered as 
a new fact. This allows adding additional facts when the certain contextual and policy conditions are 
met. By following this approach, a set of semantic rules are defined to detect in the antecedents 
conflicting behaviours referring to facts in security policies and data services information. Thus, the 
rule-based reasoning process allows detecting automatically inconsistencies as well as detecting 
semantic conflicts in the managed system. For instance, the rule shown in the snippet verifies if a duties 
conflict is present. In this basic example, duties conflict will be triggered if channel protection and deep 
packet inspection want to be configured for the same subject and target.  

MSPL(?m1) ^ MSPL(?m2) ^ m1.capability! = m2.capability ^ (1) 

m1.capability = ”DPI” ^ m2.capability = ”DTLS” ^ (2) 

m1.srcAddr = m2.srcAddr ^ m1.dstAddr = m2.dstAddr (3) 

-> ”DutiesConflict(?m1, ?m2)” 

Depending on the main goal of the conflict detection, this approach classifies the rules as semantic 
conflict detection or context-based conflict detection. From the one hand, semantic conflicts are 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 36 of 72 

focused on semantic inconsistencies that can occurs between policies of the same orchestration policy 
(intra-orchestration) or between orchestration policies (inter-orchestration). From the other hand, 
context-based conflicts also consider the current context of the infrastructure. Following some conflict 
examples applicable for both E2E Security Management Domain and Security Management Domain 
are provided: 

Semantic conflict examples: 

• Redundancy Conflict: detection of 2 security policies with the same identifier or with the same 
behaviour. For instance, the same security policy is being enforced twice or two different 
security policies models the same security properties. 

• Priority Dependency Conflict: detection of the emplacement of lower priority policy before of 
higher priority policy and detection of dependency between 2 policies with different priorities. 
For instance, a policy depends on another one with less priority. 

• Duties Conflict: detection of possible harm from a desired policy enforcement to an already 
deployed policy or to another desired policy deployment. For instance, different policies with 
incompatible capabilities are trying to be enforced over the same target. 

• Event and Policy Dependencies: requirement for the deployment completion of one or a set 
of previous policies. It identifies event and policy dependencies. 

• Managers Conflict: detection of possible conflict between system administrators. For instance, 
different administrators try to enforce incompatible actions (e.g., Allow vs Deny). 

• Override Conflict: detection of overriding behaviour of previous deployed policies. For 
instance, a new filtering policy is more permissive than other previously enforced.  

 

Context-based conflict examples: 

• Capability Missing Conflict: Detection of lack of capability by an asset to enforce the required 
policy. For instance, the required target or subject specified in the security policy is not able to 
provide the requested capability. 

• Insufficient Resources Conflicts: Detection of lack or unavailability of resources to enforce the 
required policy. For instance, at Management Domain level this conflict will be generated 
when there are not enough resources to enforce the security policy (e.g., for new VNF 
deployment), whereas at E2E level it could be generated when common parameters are 
required at E2E level to configure common resources (e.g., channel protection tunnel), but 
there are no common parameters available.  

Regarding the knowledge base, it needs to be constantly updated (reactively and proactively), 
generating facts from different sources such as monitoring tools and crawlers which provide different 
kinds of information about the infrastructure. Information about security policies and their status is 
also tracked for identifying successfully deployed policies and analysing events based on context, thus 
maintaining the system consistency. In this way, when a new security policy is received, the rule engine 
performs a rule matching against the current facts, to avoid conflicts and dependencies between the 
policies or between the policy and the status of the infrastructure. This process will return a list of 
tuples that specify the type of object involved and the type of issue (conflicts or dependencies). From 
the one hand, the Policy Conflict Detection procedure is coordinated with the rest of the system by 
sending the result back to the Security Orchestrator who verifies it, and notifies the conflicts to the 
entity who requested the policy enforcement. From the other hand, dependencies are analysed and 
queued until they are satisfied. Once these dependencies have been solved, security policies are ready 
to continue with the orchestration and enforcement processes. Conflict and Dependency detection 
procedure are performed at Policy Framework API, more precisely at mcdtservice point. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 37 of 72 

3.6 Threat Assessment 

The threat assessment process is used to analyse the security posture of a system under analysis. In 
the context of INSPIRE-5Gplus, the threat assessment process is based on system analysis and 
representation with the use of a domain-specific language for 5G networks. The domain-specific 
language is used to express networks in a manner that facilitates reasoning about their security 
posture. A security engineer can define assets of the network that protect, identify threats and 
vulnerabilities, get security insights on how to improve security and privacy, in a software aided 
analysis. As described in the D3.1 [11], the aims of the software aided security analysis are to 1) 
augment the expertise of a security analyst; 2) detect network and system threats in complex 
distributed environments; 3) remotely and automatically identifying hardware, software and even 
policy-related vulnerabilities; 4) provision of tailored reports (DiscØvery’s cyber-insights), which are 
suggestions based on the unique characteristics of a network; 5) holistic visualization of the complete 
threat landscape, including the people, the systems, the networks and the associated policies.  
During the course of the Task concerning this deliverable, we have used the outputs of from the 
INSPIRE-5Gplus project Task that defined the high-level security reference architecture (HLA), the work 
done on the current status and future trends, and defined security Use Cases, Enablers and 
Mechanisms for Liability-aware Trustable Smart 5G Security to improve the cyber-insights offered 
by DiscØvery. The deliverable D2.1 [14] and D2.2 [2] offered valuable information on the type and 
nature of 5G specific threats. One of the features of DiscØvery is the ability to elicit threats based on 
the network’s configuration. The threat landscape of D2.1 [14] offers a clear mapping between threats 
and targeted 5G assets that was used to define a dataset of threats for consumption by DiscØvery. The 
dataset has been structured with the following schema:  

threatsList = {  
ThreatNumber: {  

concept: “concept of the metamodel”,  
attribute: “attribute of the concept”,  
attributeValue: “value of the attribute”,  
threat: 'description of the threat',  

}  
}  

  
Based on that schema, DiscØvery can identify which network assets can be targeted by which threats 
and why. Additionally, using the same information DiscØvery can provide a list of suggestions on 
how to best mitigate the threat and minimize the attack surface of the network. An example of the 
threat identification is shown in Figure 18 and Figure 19, showing a 5G network with several edge 
components, such as MEC platforms and orchestrators, as well as several vehicles that use 5G 
resources for assisted-driving applications.  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 38 of 72 

 

Figure 18: Threat assessment model using DiscØvery  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 39 of 72 

In Figure 19, we show an example of the elicited threats that can target the 5G network components. 
For example, DiscØvery detected that the network connections between the MECs and the vehicles 
use insecure network protocols and suggested the use of encrypted alternatives. Furthermore, it 
detected that most components of the networks do not have policies for firmware and software 
updates. As a result, such components are prone to be exploited by malicious actors if not updated by 
an administrator. The enabler suggests to define an update policy for the network assets.  

  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 40 of 72 

 

Figure 19: Elicited threats using DiscØvery's dataset  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 41 of 72 

 
Our next steps for this work are to improve the threat and lists of DiscØvery to better reflect the 
evolving thread landscape. Our goal is open source the dataset as part of the DiscØvery project so it 
can be incorporated to other similar tools and improved and adopted by other stakeholders. 
Additionally, we aim to refine the cyber-insights dataset with more actionable information and 
learning resources to better assist the security engineer during the threat assessment process. The 
results of this work will be presented in D3.3 and D3.4 [1]. The APIs of the enabler are described in 
Section 5.6. 

 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 42 of 72 

4 Automated detection and enforcement 

4.1 Model-driven data management for security monitoring and detection 

The application of closed-loop control is the most relevant functionality needed to achieve zero-touch 
management. Security closed-loop control has as critical requirement a timely and trustworthy flow of 
data about the entity being managed, focusing on any kind of information that can affect the security 
of the infrastructure itself or the related services. The heterogeneity, pervasiveness and network 
topology dependency challenge the availability and utility of these data flows. 

The closed-loop operates on input data (i.e., measurements and observations captured in a continuous 
or punctual collection phase). The producers of this data usually correspond to different sources, the 
number and heterogeneity of which depend on the use case. In any sufficiently complex system, the 
number of potential sources of data and security events and their characteristics becomes extremely 
high, creating a combinatorial explosion that makes control infeasible, especially if no human 
operation is pursued in the loop. 

Some data sources in data management rely on pull-based methods (e.g., Syslog, IPFIX, SNMP), while 
others depend on push-based methods (e.g., streaming telemetry). The first are based on requests at 
predefined intervals, and the second are based on a subscription that allows the data consumers (i.e., 
subscriber) to subscribe to data models and data sources (i.e., publisher). Data availability is another 
capability where in many cases, timing constraints on both the data and their processing have to be 
considered. The usability of data for security depends on avoiding too much time delays, and the 
continuity of the data flow guarantee accurate detections and valid responses. 

This high variety of data sources, capabilities and formats make it difficult to manage the information 
to be used by the network management functions. There is a strong effort in the networks domain to 
adopt Model-driven data management based on the idea of applying modelling languages to formally 
describe data sources, defining their semantics, syntax, structure and constraints on the objects they 
are associated to. Model-driven data management considers data models, transport protocols and 
data coding languages as independent layers, easing the aggregation of any new protocol and/or 
coding that follows the same principles of model-driven data management. YANG [17] is the reference 
in data model language for network management data modelling. YANG allows creating a data model, 
define the data organization in that model, as well as the constraints. Although model-driven data 
management started with the use of the NETCONF [18] protocol and XML [19] coding, there are 
different solutions that make possible their implementation. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 43 of 72 

 

Figure 20: Model-driven data management components 

Figure 20 depicts the different components that are available for implementing model-driven data 
management solutions. In the specific area of security monitoring and data exchange, there are also 
additional models, encodings and transport protocols [16] that can be adopted. Once the data models 
are defined that describe the data sources provided by the servers (e.g., network devices, network 
probes, security agents, network elements), a client (i.e., the security data collector) can select the 
most appropriate encoding (XML, JSON [21], Protobufs [24], etc.) and the most appropriate transport 
protocol (NETCONF, RESTCONF [25] or gRPC [26] / gNMI [27], etc.) to collect and store the data. 

The ETSI ISG CIM (cross-cutting Context Information Management [28]) approach is based on the 
context information concept where any relevant information about entities, their properties, and their 
relationships with other entities are described. Context information is exchanged amongst 
applications, context producers, and context brokers. CIM considers that the exchange of data and 
metadata allows better information collection from different origins create derivative information or 
decisions. The application of the CIM framework has been focused on IoT applications so far, but given 
its support for binding context (data) sources and consumers, it is possible to apply to network 
telemetry YANG models, and others security monitoring models. Some potential examples are SNMP 
MIBs, time series databases (Prometheus), Netflow/IPFIX data flows, or STIX data model. 

The INSPIRE-5GPlus security data collector adopts the CIM context and data management principles. 
It should act as a server for the data consumers attached to it. Different data models are used by the 
consumers (e.g., the data analytic component) for accessing the data mediated by the component. The 
use of STIX/TAXII [22] for exchanging threat data is particularly appropriate since it is “the preferred 
mechanism for the information exchange between CSIRT and LE communities” and its use by 
CSIRTs/CERTs is recommended by ENISA [23]. STIX/TAXII is to be used in the Cyber Threat Intelligence 
exchanges in INSPIRE-5Gplus. 

4.2 Rule and RT-SSLA conformance 

Run-Time-SSLA (RT-SLA) conformance or assessment is based on metrics that can be measured or 
captured using automated monitoring techniques. They are not to be confused with the SSLAs that 
allow specifying the security properties of slices and verticals. RT-SSLAs can be derived from these 
“static” SSLAs but also need to be complemented with more fine-grained rules based on security 
metrics. These metrics are, for instance, those that allow determining that the security functions are 
working correctly (e.g., mean time to incident recovery, frequency of security controls, version of 
security protocols being used) and those that allow detecting security breaches (e.g., using signature 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 44 of 72 

and behaviour-based security rules, change point detection or machine learning algorithms). The RT-
SSLA formalism has been initially defined for cloud services during the SPECS [7] project, and extended 
in the MUSA [29] project where a catalogue [30] was created. INSPIRE-5Gplus adapts these models 
and formalisms so that they can be used for the security monitoring in Slice/SDN/NFV-based 5G and 
B5G mobile networks. 

The RT-SSLAs are rules based on the captured metrics and allow performing threshold analysis, 
complex event processing, and deep packet and flow inspection. They also rely on algorithms 
implementing machine learning techniques and statistical analysis for identifying behaviour anomalies. 

Real-time SSLA assessment is done by deriving rules from more abstract models (e.g., specified using 
HSPL/MSPL proposed in Section 2) that can be monitored by security agents or probes managed by 
the Security Monitoring Framework. We can predefine security rules using the capabilities provided 
by security agents, then explicitly extract security rules or threshold values from MSPL. An example of 
simple RT-SSLA to detect the isolation level between slices is given in the following Figure 22. The rule 
uses the XML syntax to specify the metrics and the thresholds that determine if the observed metrics 
are considered normal or should provoke a countermeasure. 
 

<Metric name="Isolation Accesss from other Slices">  
…  
<definition>  
Measures the isolation in percentage (%) of accessibility into the current Slice from other Slices. It is 
calculated by the % of (a) number of IP flows going to or from other Slices per (b) total IP flows of the 
current Slice, such as, (a/b*100)  
</definition>  
…  
<ParameterDefinition name="N" referenceId="">  
<def>N: n° flows going to or from given IP ranges of other Slices</def>  
</ParameterDefinition>  
…  
<ParameterDefinition name="T" referenceId="">  
<def>T: total number of IP flows of the application</def>  
</ParameterDefinition> 

Figure 21: An example of an RT-SSLA rule to detect the isolation level between slices 

In the above example, one can define what is considered a normal threshold that can be zero 
(complete isolation) or a certain percentage (limiting the network flows going to or from the slice) . 
The IP ranges allocated to a slice are retrieved from the configuration repository. The following Figure 
22 shows a complete XML specification. 
 

<?xml version="1.0" encoding="UTF-8"?> 
<wsag:AgreementOffer xmlns:wsag="ws-agreement" xmlns:specs="SLAtemplate" 
xmlns:xsi="XMLSchema-instance"> 
 
  <specs:Metric name="Isolation Accesss from other Slices" referenceId="ISOLATION_ACCESS"> 
    <specs:MetricDefinition> 
      <specs:unit name="%"> 
        <specs:intervalUnit> 
          <specs:intervalItemsType>integer</specs:intervalItemsType> 
          <specs:intervalItemStart>0</specs:intervalItemStart> 
          <specs:intervalItemStop>100</specs:intervalItemStop> 
          <specs:intervalItemStep>1</specs:intervalItemStep> 
        </specs:intervalUnit> 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 45 of 72 

      </specs:unit> 
      <specs:scale> 
        <specs:Quantitative>Ratio</specs:Quantitative> 
      </specs:scale> 
      <specs:expression>(N/T) *100</specs:expression> 
      <specs:definition>It measures the isolation in percentage (%) of accessibility  
                 into the current Slice from other Slices. It is calculated by the % of (a)  
                 number of IP flows going to or from other Slices per (b) total IP flows of  
                 the current Slice, such as, (a/b*100). 
      </specs:definition> 
      <specs:note /> 
    </specs:MetricDefinition> 
    <specs:AbstractMetricRuleDefinition> 
      <specs:RuleDefinition name="" referenceId=""> 
        <specs:definition /> 
        <specs:note /> 
      </specs:RuleDefinition> 
    </specs:AbstractMetricRuleDefinition> 
    <specs:AbstractMetricParameterDefinition> 
      <specs:ParameterDefinition name="N" referenceId=""> 
        <specs:definition>N: n°  flows going to or from given IP ranges of other slices 
        </specs:definition> 
        <specs:parameterType /> 
        <specs:note /> 
      </specs:ParameterDefinition> 
      <specs:ParameterDefinition name="T" referenceId=""> 
        <specs:definition>T: total number of IP flows of the application 
        </specs:definition> 
        <specs:parameterType>integer</specs:parameterType> 
        <specs:note /> 
      </specs:ParameterDefinition> 
    </specs:AbstractMetricParameterDefinition> 
    <specs:MetricRules> 
      <specs:MetricRule> 
        <specs:ruleDefinitionId /> 
        <specs:value /> 
        <specs:note /> 
      </specs:MetricRule> 
    </specs:MetricRules> 
    <specs:MetricParameters> 
      <specs:MetricParameter> 
        <specs:parameterDefinitionId>Result</specs:parameterDefinitionId> 
        <specs:value>0</specs:value> 
        <specs:note>It is the percent parameter.</specs:note> 
      </specs:MetricParameter> 
    </specs:MetricParameters> 
    <specs:note /> 
  </specs:Metric> 
</wsag:AgreementOffer> 

Figure 22: An example of a complete XML specification 

The RT-SSLA rules will be used and deployed by the Security Monitoring Framework (SMF) for their 
assessment during operation. Thus, the SMF needs to interact with other enablers as defined in Section 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 46 of 72 

5.8: with the Policy Management to determine what rules need to be deployed, and with the Security 
Orchestrator to notify their violation and to enforce them.  

For the enforcement, one needs to indicate in the policy or RT-SSLA what needs to be done. This then 
needs to be translated to a format that can be understood and implemented by the VIM Orchestrator 
or the Security Orchestrator. Formalisms such as TOSCA are enforced through a VIM orchestration 
(e.g., OpenStack HEAT). The UMU Security Orchestrator, on the other hand, only receives MSPLs. The 
UMU Security Orchestrator could request an MSPL to TOSCA translation and then request the TOSCA 
enforcement using a VIM orchestrator as enforcement point.  

The following Figure 23 gives an example in TOSCA/YAML for deploying a WordPress content 
management system monitored by MMT. 

tosca_definitions_version: tosca_simple_yaml_1_0 
 
description: > 
  TOSCA deployment template for deploying WordPress being monitored by Montimage Monitoring 
Tool  
 
imports: 
  - toscaparseretso/custom_types/k8s-container-type.yaml 
 
topology_template: 
  inputs: 
    k8s_namespace: 
      type: string 
      default: "sendate-demo" 
 
  node_templates: 
     
    ##################### MMT ######################## 
    mmt-database-volume: 
      type: tosca.nodes.ETSO.K8s.V1Volume 
     
    mmt-database: 
      type: tosca.nodes.ETSO.K8s.V1Container 
      properties: 
        image: mongo:xenial 
        args: 
        - "--dbpath=/mongo-database" 
        ports: 
        - container_port: 27017 
          name: mmt-database 
        readiness_probe: 
          tcp_socket: 
            port: 27017 
        volume_mounts: 
        - name: mmt-database-volume 
          mount_path: /mongo-database 
 
    mmt-operator: 
      type: tosca.nodes.ETSO.K8s.V1Container 
      properties: 
        image: montimage/mmt:operator 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 47 of 72 

        args: 
        - "-Xdatabase_server.host=mmt-database" 
          "-Xinput_mode=socket" 
        ports: 
        - container_port: 8080 
          name: mmt-operator 
        readiness_probe: 
          tcp_socket: 
            port: 8080 
 
    mmt-probe: 
      type: tosca.datatypes.MMT.K8s.V1Montior 
      properties: 
        image: montimage/mmt:probe 
        visualisation: mmt-operator 
        args: 
          -Xinput.source=eth0 
          -Xfile-output.enable=false 
          -Xsocket-output.enable=true 
          -Xsocket-output.hostname=mmt-operator 
          -Xsession-report.output-channel=socket 
          -Xsecurity.enable=true 
          -Xsecurity.output-channel=socket 
    ################################################## 
    database: 
      type: tosca.nodes.ETSO.K8s.V1Container 
      properties: 
        name: mysql 
        image: mysql:5.6 
        env: 
        - name: MYSQL_ROOT_PASSWORD 
          value: password 
        ports: 
        - container_port: 3306 
          name: mysql 
        readiness_probe: 
          tcp_socket: 
            port: 3306 
        volume_mounts: 
        - name: mysql-volume 
          mount_path: /var/lib/mysql 
        monitor: 
        - id : 1 
          name: mmt-probe 
 
    mysql-volume: 
      type: tosca.nodes.ETSO.K8s.V1Volume 
      properties: 
        empty_dir: {} 
 
    wordpress-mysql: 
      type: tosca.nodes.ETSO.K8s.V1Service 
      properties: 
        metadata: 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 48 of 72 

          name: "wordpress-mysql" 
          labels: 
            internal: "wordpress" 
        spec: 
          ports: 
            - port: 3306 
              target_port: 3306 
          selector: 
            database: mysql 
 
    frontend: 
      type: tosca.nodes.ETSO.K8s.V1Container 
      properties: 
        name: wordpress 
        image: wordpress 
        env: 
        - name: WORDPRESS_DB_HOST 
          value: wordpress-mysql 
        - name: WORDPRESS_DB_PASSWORD 
          value: password 
        ports: 
        - container_port: 80 
          name: wordpress 
        readiness_probe: 
          tcp_socket: 
            port: 80 
        monitor: 
        - id : 2 
          name: mmt-probe 
 
    wordpress: 
      type: tosca.nodes.ETSO.K8s.V1Service 
      properties: 
        metadata: 
          name: "wordpress" 
          labels: 
            app: "wordpress" 
        spec: 
          type: "NodePort" 
          ports: 
            - port: 80 
              target_port: 80 
              node_port: 31780 
          selector: 
            frontend: wordpress 
 
  policies: 
    - deployment_order: 
        type: tosca.policies.ETSO.DeploymentOrdering 
        properties: 
          deployment_order: 
            - [database] 
            - [frontend] 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 49 of 72 

Figure 23: TOSCA/YAML for deploying a WordPress content management system monitored by MMT 

4.3 Policy enforcement function  

During the Security Orchestration procedures, the policy enforcement process which is depicted in 
Figure 24, is responsible for enforcing MSPL Orchestration Policies throughout the infrastructure. As 
the system is constantly monitored and analysed, the policy enforcement process may be triggered 
proactively as the result of security measures provided by SMD administrators (from the Policy 
Framework) (1.a in the Figure) as well as inputs from the E2E Security Management Domain, or 
reactively as dynamic countermeasures from the Decision Engine (1.b) within the Security 
Management Domain as well as from E2E Security Management domain as part of an E2E 
countermeasure. 

After the orchestration process described in Section 3.3.3, and once the SMD Security Orchestrator 
has decided the most suitable security assets and their location by gathering information of the 
infrastructure from the data services for each MSPL policy (2,3), it requests the policy translation 
procedure to the Policy Framework (4) that performs the translation process as explained in Section 
2.2. When the SMD Security Orchestrator receives the final configurations, it starts enforcing the 
configurations through the different controllers, managers and security assets that will act as security 
enforcement points of the infrastructure. To this aim, a driver-based approach allows introducing new 
connection logics as new enforcement technologies are available. Thus, these enforcement points use 
specific driver implementations to enforce the requested configurations. Depending on the nature of 
the enforcement point, the enforcement on the final configurations could be delegated to specific 
managers or controllers (5.a) like NFV MANO management for new/dynamic asset deployment, or they 
could be directly enforced into the required security asset (5.b) by reconfiguring certain security asset 
(e.g., by modifying a monitoring agent behaviour or by updating channel protection cryptosuite). It is 
important to highlight that the enforcement process can be also triggered dynamically to enforce 
security policies whose dependencies have been solved. The policy enforcement is triggered at the 
meservice located in Security Orchestrator’s API. 

Typical examples of policy enforcement points are the security enablers illustrated on the Figure 24, 
such as the Virtual Channel Protection enabler presented in Section 5.12, or the I2NSF IPSEC enabler 
presented in Section 5.10 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 50 of 72 

 

Figure 24: Policy enforcement concept  

4.4 Security orchestration with MTD policy enforcement 

An additional security layer at the Service Management Domain is the Moving Target Defence (MTD) 
policy. MTD operations concerns the strategic placement of the different verticals’ resources 
proactively, increasing the complexity for malicious users to perform reconnaissance attacks and use 
the gathered intelligence in time for effective and tailored attacks, and reactively, mitigating current 
attacks detected by the Security Analytics Engine. The enforcer gets directives from the Decision 
Engine, enabled with an MTD policy that can indicate the MTD actions to perform based on the 
network’s state.  
 
MTD operations are enforced on different abstraction layers of the infrastructure (see Figure 25 
above):  

1. At the virtualisation layer, to secure NFV assets such as network slices, network services 

and virtual network functions by operating with the service and vertical orchestrator and 

the slice manager. These operations are re-initiation of a vertical’s component, migration 

of a service to a different Virtual Infrastructure Manager (VIM), and dynamic deployment 

of additional security network functions; 

2. At the transport network layer, to control the traffic using SDN controllers, and to change 

the network’s topology by shuffling the IP address space and by reconfiguring network 

interfaces. These operations can be performed both at the internal and external views of 

the network: in the former MOTDEC prevent intruders to further explore the internal 

network, while the latter may be used for reactive placements against suspicious users or 

traffics; 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 51 of 72 

MTD strategies can also dynamically deploy deceptive networks and honeypots to deceive the 
intruder. This set of MTD actions maximizes the unpredictability of network’s movement for both 
external and internal malicious users. 

 

Figure 25: MTD actions at different layers of the infrastructure 

In the context of the INSPIRE-5Gplus project, a new security enabler, namely the MTD controller 
(MOTDEC), is being developed in order to enforce certain MTD operations on NFV assets such as VNFs, 
VLDs, NSs and network services with a main focus on the protection of the latter, which includes the 
coordinated usage of the former ones. MOTDEC is developed as a security orchestration component 
within the INSPIRE-5Gplus HLA, defined in the deliverable D2.2 [2]. 

The enabler’s current implementation performs MTD actions at the virtualisation layer. Notably, it can 
re-instantiate components of a network service to mitigate intrusion attacks. It can also move the 
components from one physical server or MEC platform to a different one, solving host-related issues 
that can affect the QoS of the protected slice network.  

MTD actions vary in resource consumption and have various overheads on the performance of the 
protected services. Thus, the MTD policy needs to be optimized for an optimum trade-off between 
security requirements (i.e., SSLAs) and functional requirements (i.e., SLA, QoS, etc). For this reason, 
MOTDEC is using another INSPIRE-5Gplus enabler, the optimizer of security functions (OptSFC), an 
offline tool used in testbeds to pre-train ML models that maximize the efficiency of a set of security 
functions (in this case the MTD actions). MOTDEC is also interfaced with other enablers such as the 
network slice manager and monitoring frameworks to keep track of the running network slices, sub-
components, and their health status. The REST API interface defined to this scope is described in 
Section 5.11.  

4.5 Katana Slice Manager 

Network Slicing is a procedure that creates multiple virtual networks on top of a common physical 
infrastructure. Based on NFV and SDN, operators can provide portions of their networks to different 
vertical industries, tailored to their specific requirements. Katana Slice Manager is central software 
component that is responsible for creating, modifying, monitoring and deleting network slices. It 
interacts with higher layer entities through its SBI, such as Policy and Decision Engines, mobile 
operators and interacts with the underlying infrastructure through its NBI, that communicates with 
the the components of the Management and Orchestration Layer (MANO), namely the NFV 
Orchestrator (NFVO), the Virtual Infrastructure Manager (VIM), the Element Management System 
(EMS) and the WAN Infrastructure Management (WIM), in order to manage the functions in the 
network and perform CRUD operations on End-to-End network slices. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 52 of 72 

The REST API of the Katana Slice Manager can be found in the following link in OPENAPI format. 

• https://github.com/5genesis/katana-slice_manager/blob/master/katana-
swagger/swagger.json 

 
The complete documentation that also includes the APIs definition can be found in the project’s Github 
page: 

• https://github.com/5genesis/katana-slice_manager  
In the context of INSPIRE-5Gplus, Katana is being extended to support MTD policy actions for the 
purposes of Demonstrator 3. The points below highlight these extensions and the following 
subsections describe them in detail. 

• Generalization of NEST/GST 3GPP template in order to introduce additional technical 

specifications 

• Slice Mapping and Scheduling components of KATANA extension to support Moving Target 

Defence 

• Monitoring mechanisms for network slices that are being shared among different 

tenants/service 

• Support of Open5GS core network implementation for Demonstrator 3 

 

4.5.1 Generalization of NEST/GST 3GPP template 

The Network Slice Template that describes the parameters of network slices in the context of 5GENESIS 
follows the specifications of NG.116 – Network Slice Template v2.0 [20], defined by the GSMA. This 
document aims to assist network slice providers in mapping network slices’ use cases into generic 
attributes. For this purpose, GSMA defines the Generic Network Slice Template (GST), a set of 
attributes that characterize a network slice type. GST is generic and is not tied to any specific network 
deployment.  

The NEtwork Slice Template (NEST) is a GST filled with values. The defined attributes and their values 
are assigned to fulfil a given set of requirements derived from a network slice use case. This process is 
depicted in the diagram of Figure 26, where a Network Slice Customer (NSC) provides the requirements 
for a specific use case to the Network Slice Provider (NSP). The requirements are mapped into the 
attributes of the GST with appropriate values generating a NEST. 

 

Figure 26: Network slice creation request 

The NEST is an input to the network slice (instance) preparation performed by the Slice Manager. The 
user sends a NEST to Katana Slice Manager along with a slice creation request. The Slice Mapping 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 53 of 72 

process then parses the NEST, which, combined with the supported network functions supported by 
the underlying infrastructure, defines the NSSIs that shall be deployed as part of the slice. 

The NEST can be divided into three main sections: 

• Base Slice Descriptor: This section includes the main parameters that the Slice Manager 
utilizes for the Slice Mapping process, such as location, bandwidth requirements, isolation 
level, QoS, etc. This process selects the appropriate NSSIs that will be used for constructing the 
new slice. 

• Vertical Services Descriptor: This section describes network services that are not part of the 
slice’s core service but are defined by the Network Slice Customer, such as firewalls, caches, 
proxies, etc. These services can be either physical or virtual and must be supported by the 
underlying platform infrastructure. 

• Test Descriptor: This section specifies a series of tests that the Slice Manager must run against 
the newly deployed slice. These tests can validate various aspects of the slice, such as the 
service’s performance and reliability. 

 

While the Base Slice Descriptor is a mandatory section for a NEST used to deploy a new slice, the other 
two sections are optional and might be omitted. Slice Manager allows the administrator to on-board 
descriptors for each section before the slice creation phase. Moreover, it creates an endpoint that 
returns a list with all the on-boarded descriptors. 

4.5.2 Slice Mapping and Scheduling components of KATANA extension to support MTD 

The Slice Mapping process runs during the slice creation phase. It is responsible for optimally selecting 
the infrastructure resources to be used for a new slice, based on the slice requirements, as described 
in the NEST and the available resources of the infrastructure layer. When Slice Manager receives a 
request for the creation of a new slice, based on the definition of the available NSSIs (whether they 
can be used by multiple slices at the same time or not) and the requirements of the new slice, this 
module decides if the new slice can also use an NSSI that is already part of another running slice.  

 In order to support the Moving Target Defence functionalities, the Slice Mapping process will 
introduce some additional operations that will allow specific Day-2 configuration actions on a running 
Slice. These operations will include the re-instantiation of a Virtual Network Function and re-
establishment of the Transport Network paths, complying with some specific constraints provided by 
the MTD component. These Day-2 operations will enhance the security of a running slice and mitigate 
the risk of permitting unauthorized actions by malicious parties. 

4.5.3 Monitoring mechanisms for network slices that are shared by different 
tenants/service 

The Slice Monitoring module in Release B enables monitoring, visualization, and alerting services 
responsible for tracking the status of components and services part of the instantiated slices and the 
Slice Manager itself. It comprises a Prometheus server and a Grafana web application running in 
Docker containers as part of the overall Slice Manager software stack. This process provides insights 
on the performance while ensures continuous uptime and good health of the services realized by every 
network slice. Platform administrators can utilize the slice monitoring feature to quickly detect 
networking failures and determine in real-time whether the platform is running optimally. Release B 
of the 5GENESIS Slice Manager capitalizes on Prometheus and Grafana to create a toolkit that offers 
monitoring, visualization, and alerting capabilities. The tools are packaged in Docker containers and 
delivered as part of the Slice Manager microservices architecture. 

Slice Manager exploits Prometheus as a time-series database. It collects, organizes, and stores metrics 
from targets by scraping HTTP endpoints. These targets are either physical or virtual components and 
services of the underlying infrastructure that have been instantiated and configured to be part of a 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 54 of 72 

deployed slice. Prometheus offers a file-
based service discovery mechanism, which 
allows adding new targets dynamically in a 
JSON file, along with metadata about those 
data. Every component of the MANO layer 
that the platform administrator adds to 
the Slice Manager is configured to be a 
new Prometheus target if the component 
supports it. This feature enables Slice 
Manager to collect monitoring information 
from various domains that are part of each 
slice.  

Alerting rules is another valuable feature 
of Prometheus that the Slice Manager 
utilizes. This feature allows the platform 
administrator to define alert conditions 
based on Prometheus expression 
language. Whenever the alerting criteria 
are met for one or more elements at a 
given point in time, Prometheus sends 
notifications about the firing alerts to 
external services.  

In addition to the process of scrapping the 
data, Slice Manager utilizes Grafana to 
visualize the collected metrics stored in the 
Prometheus database. Grafana allows the 
creation of multiple dynamic and reusable 
dashboards that include custom 
visualizations based on predefined 
templates. Slice Manager exploits this 
capability to create a dedicated dashboard 
for every deployed slice, concentrating and 
visualizing the metrics related to each one. 
This approach allows the Slice Manager 
administrator to efficiently keep track of 
the services and components that are 
instantiated and configured as part of a 
slice. When a network slice is terminated, 
Slice Manager dynamically deletes the 
respective Grafana dashboard. Figure 27 
provides a snapshot of a Grafana 
dashboard that the Slice Manager created 
for a deployed slice. In this example, 
Grafana visualizes metrics collected from i) 
the NFVO related to the health and status 
of the instantiated VNFs, ii) the WIM 
related to the network traffic in the slice, 
and iii) the VIM related to the performance 
of the created VMs. 

 
Figure 27: Grafana dashboard for a deployed slice by Katana 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 55 of 72 

Furthermore, Grafana 
creates a Dashboard that 
provides an overview of the 
deployed slices and their 
status. This Dashboard is 
based on a static 
configuration and is used as 
the Grafana home page 
dashboard. Figure 28 depicts 
a snapshot of the home 
dashboard. 

 

  

Figure 28: Grafana home dashboard  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 56 of 72 

4.6 Optimisation based on chaining and microservices 

4.6.1 Chaining of virtualised security functions, micro-services, and VNFs 

The 5G network aims to converge mobile and fixed networks for supporting E2E applications and 
services in a more secure and resilient manner. To improve the flexibility and adaptability of the 
Virtualised Networking Functions (VNFs), one technique is to introduce the composition of network 
functions based on micro-services at the control and data-planes. NFs enable a wide variety of 
applications to be implemented as in-network software functions that range from lightweight software 
firewalls, high performance proxy to complex Deep Packet Inspection (DPI) applications. This is 
referred to as Service Function Chaining (SFC) to build more flexible and complex security services that 
involve the monitoring and enforcement. For example, network slicing in 5G could be achieved thanks 
to SFC when data processing will become a sequence of services managed by different stakeholders. 
Furthermore, deploying a monitoring service that monitors the network traffic is crucial for detecting 
anomalies in NFV-based architectures, as the monitoring service allows to provide detailed metadata 
and security reports concerning the network traffic in real-time. One of the challenges is to find a way 
to efficiently transmit packets through a processing chain. In this perspective, the objective is to 
identify the security NFs that can be composed from micro-services, define multi-layer orchestration, 
and optimize micro-services’ interactions.  

One potential solution that has been investigated is OpenNetVM [31]. This tool allows managing and 
orchestrating micro-services. It provides a virtualisation-based high-speed packet delivery platform 
that obtains low resource overhead and low latency. The key idea is to eliminate the overhead of 
Operation System kernel packet processing, allowing zero-copy packet delivery between NFs, requiring 
no interrupts using DPDK [32] poll-mode driver, and allowing dynamically managing and reconfiguring 
the NFs using its NF Manager. It relies on a shared memory across NFs and NF Manager that eliminates 
overhead introduced when copying network packets or traversing network interfaces. It also allows 
defining security domains, i.e., security boundaries between trusted and untrusted NFs. 

The OpenNetVM architecture is depicted in Figure 29 where we have a shared memory that can be 
accessed by the different container-based NFs, and the NF Manager that allows tracking the active NFs 
and directing the network flows from one to the other. 

 

Figure 29: OpenNetVM architecture 

The NFs are run inside Docker containers and use the NFlib API that allows each NF to interface with 
the NF Manager and other NFs, for instance: 

• onvm_nflib_init function initializes all the data structures and memory regions that the NF 
needs to run and communicate with the manager. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 57 of 72 

• onvm_nflib_run is the communication protocol between the NF and the manager, where the 
NF provides a pointer to a packet handler function to the manager. The manager uses this 
pointer to pass packets to other NFs and in this way route the traffic. This function 
continuously loops and give the addresses of the packets one-by-one to the destination NF in 
the chain. 

The shared memory handles huge pages for making the packets processing efficient. The RX threads 
directly receive the packets from NICs (Network Interface Cards) using DPDK, and the TX threads make 
the packet pointers available between NFs. Each NF is identified by its ServiceID and its InstanceID, 
several NFs can share the same ServiceID but the InstanceIDs are unique. For a given ServiceID, the 
manager will decide which instantiated NF will process the incoming packet, improving flexibility and 
fault tolerance. In case of a sudden freeze of an NF, the manager can simply route the packets to 
another one using the same ServiceID.  

A simple example of a service chain is given in Figure 30 that shows one NF acting as a firewall to filter 
the packets that do not need to be processed by the security solution, and the disaggregation of the 
packets to optimise the processing by separating it into specialised processing and/or parallelising it. 
To increase the throughput speed and avoid the packet loss problem, we can develop a scaled version 
of complex services, such as the monitoring NF Probe, running on multiple cores on the OpenNetVM 
framework. Technically, the scaling NF will spawn multiple children NFs. and each child NF which has 
a unique InstanceID runs on a specific core. OpenNetVM uses the Receive Side Scaling (RSS) hash value 
to provide flow consistency and support load balancing among children NFs with the same ServiceID. 
All spawned NFs manage their own RX/TX ring buffers to receive and send packets to the destination 
NF in the service chain. 

Furthermore, OpenNetVM facilitates the deployment and placement of NFs to ensure E2E flow 
performance. It is flexible to change the placement or redeploy new instances of services controlled 
by the Security Orchestrator in Section 3.3 according to the predefined SSLAs in Section 3.2 in the event 
of an accident. 

 

 

Figure 30: Example of a service chain 

4.6.2 Security by Orchestration for optimizing the placement of Vertical applications 

Multi-access Edge Computing (MEC) enables the 5G network operator to offer cloud computing 
capabilities and an environment dedicated to the delivery of IT services at the network edge. Using 
edge infrastructure distributed over the network, external applications can be hosted meeting specific 
requirements of vertical industries (e.g., low latency, high bandwidth, data sovereignty and privacy 
protection). The most widely used MEC reference architecture (MEC RA) is defined by ETSI [33]. It also 
describes process of orchestration and management of MEC applications.  
 
As indicated in 5G-PPP white paper on Edge computing [34], the MEC system must be secured 
according to the best practices of server security, virtualisation infrastructure security and address 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 58 of 72 

additional MEC specific threats. In addition to using various protection technologies like system 
hardening techniques, system-level authentication and access control, physical controls, 
communications security, software integrity protection, TEE, HSM, etc.; isolating sensitive workloads 
from non-sensitive ones is recommended in multi-tenant virtualised environments to which MEC 
belongs. The optimization of placement of Vertical applications with isolation constraint can be the 
solution to meet this recommendation within limited resources of edge infrastructure. 
  
MEC infrastructure model 
  
The edge infrastructure for 5G networks and beyond is often structured as 3-layer hierarchy (Figure 
31) of edge datacentres (DC) reflecting available physical locations and underlying transport network 
topology consisting of:  

• Regional Datacentres – providing new geographically distributed hosting capabilities for 
services based on NFV and function chaining; 

• Local Datacentres – often reusing the infrastructure developed for fixed network (Central 
Office) with placement usually correlated with density of population; 

• Cell Site Datacentres for extreme edge use cases – located close to RAN infrastructure. 
 

 

Figure 31: Model of 5G and beyond computing infrastructure 

The quantity of possible Cell Site edge locations is much higher than Local or Regional datacentres. 
Going up in the presented datacentre hierarchy increases latency, but improves datacentre physical 
protection and available processing power. Going down the hierarchy brings higher costs (due to 
limited capacity of Cell Site edge datacentres) with better QoS parameters. In further considerations 
fully-fledged edge computing continuum with 3-level hierarchy of datacentres is assumed. 
 
Security by Orchestration 
  
According to ETSI MEC RA, the placement of MEC applications in Edge Datacentres (MEC hosts) is 
performed by MEC Orchestrator taking into account required performance and latency. In the 
proposed approach (Security by Orchestration) security constraints are taken into consideration in the 
orchestration process.  
  
Initially for the isolation constraint the following hypothesis is used: MEC application instances can be 
placed on the same physical node if and only if each of them has security level equal or higher than the 
maximum of requested isolation levels by each of them.  
It assumes that security level (sec_lvl) is assessed for each MEC application and application owner may 
request isolation_level (iso_lvl) not higher than sec_lvl: 
 

  



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 59 of 72 

  
Security level of MEC application image is determined in security assessment process using criteria 
such as image vulnerability scanning results; security assessment of base OS image used for MEC 
application image; security of development process (programming language, libraries, open-source 
components, etc.); security assessment of application testing. On the other hand, isolation 
requirement for each application instance is defined by application owner using application security 
level and its criticality for the whole service. Resulting affinity rule prevents placement of sensitive 
applications on the same resources with non-sensitive and potentially more vulnerable applications 
that can be taken over in order to perform attack on isolation.  
  
In order to include these constraints in MEC application placement process, the placement 
optimization algorithm needs to be defined. Initially it is proposed the algorithm that calculates the 
optimal placement of all requested instances of all MEC applications over available edge infrastructure 
resources. Therefore, its input data should include details about edge infrastructure and MEC 
application instances to be placed in it. Edge infrastructure data model consists of detailed topology 
of edge datacentres (Figure 32) with information about available servers and their resources, i.e., 
vCPU, RAM, storage, GPU, HSM, power consumption, cost of vCPU. 
  
  
  

 

Figure 32: Simple example of MEC infrastructure topology 

On the other hand, MEC application instance data model includes instance parameters, e.g., vCPU, 
RAM, storage, latency, preferred location, additional constraints (availability of GPU, HSM) and 
mentioned above security constraints: security level and isolation level. By contrast, the output data 
of placement algorithm gives optimised placement of application instances preserving all presented 
constraints (including isolation requirement). 
The problem can be solved with different optimization techniques (like linear optimization) or using 
heuristics to define sub-optimal placement of applications. The optimisation criteria should cover cost 
of placement on specific hardware, overall latency imposed by location of application instances and 
possibly other needs as energy effectiveness. 
 
Integration into ETSI MEC RA and INSPIRE-5Gplus architecture 
 
The placement algorithm can be exposed via API (described in Section 5.9) forming Security by 
Orchestration for MEC enabler to be used by MEC Orchestrator. In order to get the optimal placement 
MEC Orchestrator needs to aggregate input data for the enabler. The data models for MEC Application 
Package, MEC Application Descriptor, MEC Application Instance defined in ETSI MEC specifications 
[33][35] can be extended with additional needed parameters.  
 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 60 of 72 

Security by Orchestration for MEC enabler interacts directly with Service Orchestrator (in case of 5G 
MEC it is MEC Orchestrator). Therefore, its functionality is not related to security orchestration. In 
Security Management Edge Domain, the isolation requirements implementation and monitoring can 
be controlled within Policy & SSLA Management module. As depicted in Figure 33, MEC customers 
(Verticals) provide needed information to instantiate applications in MEC, security related information 
is then processed by Security Management framework and relevant data are transferred to Service 
Orchestrator where optimal placement of applications with security constraints is performed.  
 
 

 

Figure 33: Security by Orchestration and Inspire-5Gplus architecture 

Security by Orchestration for MEC enabler provides the optimization of placement of Vertical 
applications with isolation constraint for MEC applications deployed as virtual machines. Initial 
placement algorithm calculates locations for static set of applications and instances. Further evolution 
directions include the dynamic changes of instances to be placed, other virtualisation payloads (like 
containers) and additional constraints to be considered in the optimization. 
 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 61 of 72 

5 Specification of the enablers’ APIs 

In the following we provide the links to the API specified for each enabler that drive the 5G security, 
making it adaptive and more automated. We give here the OpenAPI or Kafka messages specifications 
with a brief description. 

5.1 Security Orchestrator (TSG, UMU) 

The Security Orchestrator’s REST API is specified in OpenAPI format on the Swagger website: 

• https://app.swaggerhub.com/apis/INSPIRE-5Gplus/Security-Orchestrator/1.0.0 

Sections 3.3.3 and 4.3 describe the security orchestration and enforcement features that will be 
provided by the Security Orchestrator enabler. In this regard, E2E SMD Security Orchestrator and SMD 
Security Orchestrator expose REST APIs to orchestrate and enforce HSPL-OP/MSPL-OP according to 
the description provided by those Sections. This is, they implement REST APIs to orchestrate and 
enforce security orchestration policies across multiple domains (E2E) and inter-domain.  

The OpenAPI definition that allows requesting SMD E2E policy orchestrations and enforcements can 
be found at: 

https://github.com/INSPIRE-5Gplus/i5p-hla-
api/blob/main/WP3_SecurityOrchestrator_UMU/e2e_security_orchestrator.jsonBriefly summarised, 
the SMD E2E Policy Orchestrator APIs are the following: 

• e2eseservice: point at which the SSLA is received, the SSLA orchestration manager is 
instantiated and refinement to MSPL-OP is performed for the subsequent creation of the e2e 
orchestration plan. 

• e2eheservice: point at which the HSPL-OP is received, the HSPL-OP orchestration manager is 
instantiated and the refinement to MPSL-OP is performed for the subsequent creation of e2e 
orchestration plan. 

• e2emeservice: point at which the MSPL-OP is received (from SMD Decision Engine), the MSPL-
OP orchestration manager is instantiated and the orchestration process finalizes with the e2e 
orchestration plan (Calculated SMD involved domains, conflicts & dependency detected).  

The OpenAPI definition that allows requesting SMD policy orchestrations and enforcements can be 
found at: 

• https://github.com/INSPIRE-5Gplus/i5p-hla-
api/blob/main/WP3_SecurityOrchestrator_UMU/security_orchestrator.json 

Briefly summarised, the SMD E2E Policy Orchestrator APIs are the following: 

• meservice: point at which the MSPL-OP is received (from E2E Security Orchesrtator), the MSPL-
OP orchestration manager is instantiated and the orchestration process finalizes with the 
orchestration plan (Calculated Security Assets, conflicts & dependency detected ans 
Translation procedure). 

 
Besides, logging information for request traceability can be provided through a message queue (e.g., 
Kafka broker). Current version uses the following JSON format: 

{"timestamp": "", "from_module": "", "from_component": "", "to_module": "", "to_component": "", 
"incoming": "", "method": "", "data": "", "notes": ""} 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 62 of 72 

5.2 SSLA Manager (TSG) 

The SSLA Manager’s REST API is specified in OpenAPI format on the Swagger website: 

• https://app.swaggerhub.com/apis/INSPIRE-5Gplus/api-sla_management/2.0#free 

The API provides SSLA lifecyle management operations (creation, update, removal) and access to the 
managed SSLA content. The main managed objects are actually SSLA templates as defined by the 
SLATemplate XML schema here: 

https://bitbucket.org/specs-team/specs-utility-xml-sla-
framework/src/master/schemas/SLAtemplate/ 

This schema is based on the WS-Addressing standard and work from the SPECS project. 

5.3 Secured Network Slices for SSLA (CTTC) 

The REST API for the Secured Network Slices for SSLA enabler is specified in OpenAPI format. The API 
is not in it its final version as integration actions can still be done. The current API version is accessible 
on the INSPIRE-5Gplus Github repository: 

• https://github.com/INSPIRE-5Gplus/i5p-hla-api/tree/main/WP3_SecureNetworkSliceSSLA 

Briefly summarised, the Secure Network Slice for SSLA API is structured in the following three main 
keywords: 

• /nst: this root-path gathers the set of actions to manage the Network Slice Templates (NSTs) 
available to be deployed. 

• /ssla: this root-path defines any action related to the SSLA information management, 
essentially to get the available SSLAs to be used with the NSTs. 

• /sec_nsi: this root-path gather the multiple actions to manage actions related to the Secured 
Network Slice Instances (SecNSI) such as to get the existing ones from the Database or to 
trigger the deployment and termination of SecNSIs. 

5.4 Katana Slice Manager (NCSRD) 

The REST API of the Katana Slice Manager can be found in the following link in OPENAPI format. 

• https://github.com/5genesis/katana-slice_manager/blob/master/katana-
swagger/swagger.json 

 

The complete documentation that also includes the APIs definition can be found in the project’s Github 
page: 

• https://github.com/5genesis/katana-slice_manager  

5.5 SFSBroker (UOULU) 

The REST API for SFSBroker for the tenant resource requests is to be specified in OpenAPI format 

The complete documentation that also includes the APIs definition can be found in the project’s Github 
page: 

  

https://bitbucket.org/specs-team/specs-utility-xml-sla-framework/src/master/schemas/SLAtemplate/
https://bitbucket.org/specs-team/specs-utility-xml-sla-framework/src/master/schemas/SLAtemplate/


D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 63 of 72 

The REST API for the SFSBroker is specified in OpenAPI format and placed in the INSPIRE-5Gplus Github 
repository: https://github.com/INSPIRE-5Gplus/i5p-hla-api/tree/main/WP3_SFSBroker 

For instance, the following APIs correspond to the monitoring and the enforcement of the SFSBroker 
Framework: 

• "POST /resourceRequest" initiates the resource request from the consumer side 

• "POST /updateMNOs" updates the available resources from MNOs 

• Metadata message - /resourceRequest in JSON form 

{"tenantIdentifier": "e86dfa01c678a31185338acca50535f0", "demandQuantity": "[1,3,5,6,7,8]", 
“timestamp”:”19-12-2021 10:34:45”} 

• Metadata message - /updateMNOs JSON form 

{"mnoIdentifier": "e844544243feaa56acd3345ae2a2eae", "availaibleQuantity": "[2,3,56,6,77,4,5]", 
“timestamp”:”19-12-2021 10:34:45”} 

5.6 DiscØvery (CLS) 

For the development of the DiscØvery API we aim to develop a REST API service. The REST API service 
will be used to upload and store data that are relevant to the security functions of the enabler, such 
as network capture files to generate models, and vulnerabilities datasets. The REST API schema is 
specified in OpenAPI. The current API is still under specification and development, and not yet finalized, 
but can be viewed on the open-source repository of DiscØvery. 

The source code of the DiscØvery can be found on the following link: 

• https://github.com/CyberLens/Discovery 

The current version of the API of DiscØvery is specified using the OpenAPI format can be viewed on 
the following link: https://github.com/CyberLens/Discovery/API.md 

The following APIs are currently supported by the enabler: 

• “POST /model” accepts networks to generate models for security analysis 

• “POST /vulnerabilities” updates the vulnerability database connected to DiscØvery 

• “POST /insights” updates the cyber-insights repository of the enabler 

5.7 Policy Framework (UMU) 

Policy framework provides REST APIS to refine HSPL-OP into MSPL-OP, to translate MSPL-OP into final 
configurations of the underlying infrastructure (asset´s configurations) as well as to detect policy 
conflicts. Besides, it also provides end-points to store and retrieve policy instances, templates, 
refinement and translation results as well as policies enforcement status. Templates can be used by 
other components to build new security policies whereas the rest of the information eases traceability 
and consistency. These APIs are used during different processes like the ones described on Sections 
2.2 and 3.5. 

The OpenAPI definition to perform refinement operations and policy-based enforcement operations 
related to HSPL-OP can be found at: 

https://github.com/INSPIRE-5Gplus/i5p-hla-
api/blob/main/WP3_PolicyFramework_UMU/h2m_service.json 

https://github.com/CyberLens/Discovery
https://github.com/CyberLens/Discovery/API.md


D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 64 of 72 

 

Briefly summarised, the E2E Policy Framework APIs are the following: 

• h2mservice: It is the Refinement Procedure, transform HSPL-OP into MSPL-OP 

• h2eservice: It is the Enforcement Service for HSPL-OP policies, it will use above service for its 
purpose. 

The OpenAPI definition to perform translation operations and policy-based enforcement operations 
related to MSPL-OP can be found at: 

• https://github.com/INSPIRE-5Gplus/i5p-hla-
api/blob/main/WP3_PolicyFramework_UMU/m2l_service.json 

The OpenAPI definition to perform conflict detection operations can be found at: 

• https://github.com/INSPIRE-5Gplus/i5p-hla-
api/blob/main/WP3_PolicyFramework_UMU/cdt_service.json 

Briefly summarised, the Policy Framework APIs are the following: 

• m2lservice: It is the Translation Procedure, it receives an MSPL-OP and it is translated to final 
security asset configurations. 

• m2eservice: It is the Enforcement Service for MSPL-OP policies, it will use above service for its 
purpose. 

• mcdtservice: It is the service in charge of detecting and managing conflicts and dependencies 
at MSPL level. 

 
Besides, logging information for request traceability can be provided through a message queue (e.g., 
Kafka broker). Current version uses the following JSON format: 

{"timestamp": "", "from_module": "", "from_component": "", "to_module": "", "to_component": "", 
"incoming": "", "method": "", "data": "", "notes": ""} 

5.8 Security Monitoring Framework (MI) 

The REST API for the Security Monitoring Framework enabler is specified in OpenAPI format and placed 
in the INSPIRE-5Gplus Github repository:  

• https://github.com/INSPIRE-5Gplus/i5p-hla-
api/tree/main/WP3_SecurityMonitoringFramework_MI 

The OpenAPI definition for the internal communication between two components MMT-Probe and 
MMT-Operator can be found at: 

• https://github.com/INSPIRE-5Gplus/i5p-hla-
api/blob/main/WP3_SecurityMonitoringFramework_MI/MMT-1.6.13-resolved.yaml  

• https://app.swaggerhub.com/apis/strongcourage/MMT/1.6.13  

The OpenAPI definition for the Security Monitoring Framework interacting with other enablers, e.g., 
Security Orchestrator, Policy Management are as follows. The APIs are currently under development 
to be compatible with other enablers. 

https://github.com/INSPIRE-5Gplus/i5p-hla-api/tree/main/WP3_SecurityMonitoringFramework_MI
https://github.com/INSPIRE-5Gplus/i5p-hla-api/tree/main/WP3_SecurityMonitoringFramework_MI
https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_SecurityMonitoringFramework_MI/MMT-1.6.13-resolved.yaml
https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_SecurityMonitoringFramework_MI/MMT-1.6.13-resolved.yaml
https://app.swaggerhub.com/apis/strongcourage/MMT/1.6.13


D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 65 of 72 

• https://github.com/INSPIRE-5Gplus/i5p-hla-
api/blob/main/WP3_SecurityMonitoringFramework_MI/MMT-Enablers-1.0.0-resolved.yaml  

• https://app.swaggerhub.com/apis/strongcourage/MMT-Enablers/1.0.0  

For instance, the following APIs correspond to the monitoring and the enforcement of the Security 
Monitoring Framework: 

• "POST /monitoring" starts a MMT-Probe without any security analysis 

• "PUT /monitoring" starts (if not run yet) or updates MMT-Probe with security analysis (e.g., to 
activate a security rule to detect whether there exists BitTorrent in the network traffic) 

• "DELETE /monitoring" stops MMT-Probe 

• "GET /monitoring" gets the current status of MMT-Probe 

• "POST /reaction/forwarding" enforces a reaction 

• "GET /mspl" obtains a MSPL from Policy Manager and produces a RT-SSLA 

• "GET /rt-ssla/metrics" extracts metrics from a RT-SSLA 

• "POST /alerts" sends alerts to Decision Engine 

The Security Monitoring Framework also supports the use of KAFKA message bus servers so that the 
MMT-Operator can receive metadata from the MMT-Probe via this type of publish/subscribe system. 
The KAFKA messages in JSON format provide the same data structures as specified in the OpenAPI 
specification. For example: 

• Metadata message:  

{"probe_id": "", "timestamp": "", "data_volume": "", "total_packet_count": "", "uplink_data_volume": 
"", "uplink_packet_count": "", "downlink_data_volume": "", "downlink_packet_count": "", 
"mac_source": ""} 

• Security message:  

{"probe_id": "", "timestamp": "", "property": "", "verdict": "", "type": "", "description": "", "count": ""} 

5.9 Security by Orchestration for MEC (OPL) 

The REST API of Security by Orchestration for MEC is specified in OpenAPI format. The REST API is 
currently in the development phase and further actions are envisaged. The current version is available 
at: 

• https://github.com/INSPIRE-5Gplus/i5p-hla-

api/blob/main/WP3_Security_by_Orchestration_for_MEC_OPL/openapi.yaml 

 

Section 4.6. describe Security by Orchestration for MEC approach that will be provided by the Security 

by Orchestration for MEC enabler. The API for this enabler is as follows: 

• “POST /placement” calculates the placement of MEC applications and its instances on the 

hierarchical edge infrastructure  

Current version uses the following JSON format: 

 

https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_SecurityMonitoringFramework_MI/MMT-Enablers-1.0.0-resolved.yaml
https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_SecurityMonitoringFramework_MI/MMT-Enablers-1.0.0-resolved.yaml
https://app.swaggerhub.com/apis/strongcourage/MMT-Enablers/1.0.0
https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_Security_by_Orchestration_for_MEC_OPL/openapi.yaml
https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_Security_by_Orchestration_for_MEC_OPL/openapi.yaml


D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 66 of 72 

{"topology":{"regions":[{"id":"","latency":0,"edge_servers":[{"id":"","edge_server_id":""}],"central_of

fice":[{"id":"","latency":0,"edge_servers":[{"id":"","edge_server_id":""}],"service_area":[{"id":"","late

ncy":0,"edge_servers":[{"id":"","edge_server_id":""}]}]}]}],"edge_servers_specification":[{"edge_serve

r_id":"","name":"","vCPU":0,"cost_vCPU":0,"max_OCPU":0,"RAM":0,"max_ORAM":0,"storage":0,"GP

U":0,"HSM":0,"power_consumption":0,"backups":0}]},"mec_applications":[{"index":"","security_level

":"","latency":0,"isolation_level":0,"qos":0,"migration_cost":0,"instances":[{"index":"","preferred_loc

ation":"","vCPU":0,"RAM":0,"storage":0,"HSM":0,"GPU":0}]}]} 

5.10 I2NSF IPSEC (TID) 

Based on the concept introduced in Section 4.1 for model-driven data management, this enabler uses 
a YANG model encoded in XML format and transported with a NETCONF interface for management of 
the agents on the network. This approach allows easy integration of the I2NSF controller with existing 
SDN controllers and orchestrator in network domains. 

The specification of the YANG model used by the enabler is a reduced version of the RFC9061. The 
following example (Figure 34) shows a NETCONF based XML model to add a IPSec entry into the 
security agent. 

<config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 

<ietf-ipsec xmlns="http://example.net/ietf-ipsec" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"> 

<ipsec> 

<sad> 

  <sad-entry> 

          <spi>SPI_IN</spi> <!-- SPIa1=SPI1 in A--> 

          <anti-replay-window>32</anti-replay-window> 

          <rule-number>0</rule-number> 

          <local-addresses> 

                  <start>REMOTE_INTERNAL</start> 

                  <end>REMOTE_INTERNAL</end> 

          </local-addresses> 

          <remote-addresses> 

                  <start>LOCAL_INTERNAL</start> 

                  <end>LOCAL_INTERNAL</end> 

          </remote-addresses> 

          <next-layer-protocol>TCP</next-layer-protocol> 

          <local-ports> 

                  <start>0</start> 

                  <end>0</end> 

          </local-ports> 

          <remote-ports> 

                  <start>0</start> 

                  <end>0</end> 

          </remote-ports> 

          <security-protocol>esp</security-protocol> 

          <esp-sa> 

                  <encryption> 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 67 of 72 

                          <encryption-algorithm>des</encryption-algorithm> 

                          <key>ENC_KEY</key> 

                          <iv>VECTOR</iv> 

                  </encryption> 

          </esp-sa> 

          <mode>TUNNEL</mode> 

          <tunnel> 

          <local>REMOTE_ADDRESS</local> 

          <remote>LOCAL_ADDRESS</remote> 

          </tunnel> 

          <sad-lifetime-soft> 

                  <bytes>100000</bytes> 

                  <packets>1000</packets> 

                  <added>120</added> 

                  <used>111</used> 

          </sad-lifetime-soft> 

          <sad-lifetime-hard> 

                  <bytes>200000</bytes> 

                  <packets>2000</packets> 

                  <added>140</added> 

                  <used>121</used> 

          </sad-lifetime-hard> 

  </sad-entry> 

</sad> 

</ipsec> 

</ietf-ipsec> 

</config> 

Figure 34: NETCONF based XML model to add a IPSec entry into the security agent 

5.11 MTD Controller (ZHAW) 

The MTD controller (MOTDEC) API is defined following the OpenAPI format. The API definition can be 
opened with the Swagger editor and is available in the INSPIRE-5Gplus Github repository:  

https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_MOTDEC/WP3_motdec.yamlThe 

API is interfaced to a service subscriber, generally a slice manager or an orchestrator, providing the 

needed information on the resources to be protected. Such resources can be object descriptions of 

network slices, network services, or VNFs. These are mapped to infrastructure-related objects, such as 

VIMs or switches, providing their resource availability, resource usage, and dataflow monitoring. The 

monitoring data is collected through periodic API calls and added to a list of objects defined as the 

resource history. The structured data is then fed to the optimizer of security functions (OptSFC), and 

provides the different MTD actions that can be performed. Based on this, OptSFC will use the API to 

provide its decisions on the actions to take. This is used both during the pre-training phase of OptSFC, 

to find an optimal MTD security policy, and at runtime for the deployment of the security policy on the 

5G network. 

https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_MOTDEC/WP3_motdec.yaml


D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 68 of 72 

5.12 Virtual Channel Protection (TSG) 

The Virtual Channel Protection enabler is deployed (or updated) by the SMD Security Orchestrator as 
a policy enforcement function - cf. 4.3 - in the data plane. In the context of INSPIRE-5Gplus, it is 
implemented as a (D)TLS proxy that can interact with a remote KMS (Key Management Server).  

Although it does not expose an API for remote interactions on its own, it is designed to be deployed 
and managed through Kubernetes (K8s) API as a container, using a Kubernetes 
CustomResourceDefinition (CRD) as API resource description specification. For a later version, we are 
also considering the use of the TOSCA VNF standard as defined by ETSI GS NFV-SOL 001 [36], more 
precisely using a K8s CRD encapsulated in a TOSCA Containerized VNF format. 

 

The K8s CRD defines two kinds - Ingress and Egress, depending on whether the proxy secures 
communications going out of a K8s cluster (Egress kind) or going in (Ingress kind). The CRD defines the 
following properties: 

• Listening_address (string): UDP/TCP listening address in the form <host>:<port>  

• Protocol (string): (D)TLS protocol/version. E.g., DTLS_1.2 (DTLS implies UDP, TLS implies TCP) 

• Keystore (associative array): private key store; the private key and certificate are used for 
authentication to (D)TLS peers if kms undefined, else to the KMS. 

o Provider (string, optional): keystore provider ID, i.e., default PEM provider or one of 
the registered PKCS#11 providers if any 

o Parameters (associative array): parameters depending on the keystore provider 
▪ If provider is the default (PEM),  

• Private_key (string): private key in PEM private key format. A 
Kubernetes-ready KMS provider or secure secret management 
solution like Hashicorp Vault should be enabled on the K8s cluster 
used as deployment target, in order to protect the key content 
properly. 

• Certificate (string): certificate (with CA chain) in PEM format 
▪ Else the parameters depend on the PKCS#11 provider (e.g., HSM vendor)  

• Trusted_cas (string): Trusted CAs (Certificate Authorities) for authenticating (D)TLS peers if 
kms undefined, else the KMS.  

• cipher_suites (array of strings): enabled (D)TLS cipher suites, e.g., 
TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256,TLS_DHE_PSK_WITH_AES_128_GCM_SHA256  

• Kms (optional associative array): KMS-specific settings, if attribute-based encryption is 
required 

o Kms_url (URL): KMS endpoint address, must be a https:// URL 
o Labeling_rules (array, optional): confidentiality labelling rules applied to data sent, 

required only for Egress kind; each labelling rule is an associative array of: 
▪ Destination (string): destination address (<host>:<port>) to which the rule 

applies 
▪ Label (string): confidentiality label applied to data sent to the destination 

above. The label is used as parameter in cryptographic key requests to the 
KMS. For example, in a publish-subscribe protocol, you can use the topic name 
as label in order to encrypt each topic under a different key, and therefore 
enforce a cryptographic access control. 

 

 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 69 of 72 

6 Conclusions 

This deliverable presents the drivers and models needed for managing end-to-end and multi-domain 
security defined by security policies and SSLAs. It considers the management of the security 
requirements of slices, and the monitoring and assessment of security policies and SSLAs during 
operation.  

The formalisms used to define security policies are described, as well as how they are translated and 
used by the Security orchestration and monitoring functions. The HSPL models high-level security 
requirements, priorities and dependencies in form of high-level orchestration security policies, 
independent from the underlying technologies. To be able to automate the security management 
process, this high-level specification needs to be translated to a formalism (i.e., MSPL) less-abstract 
model that remains independent of the underlying infrastructure. Then, it can be translated to the 
low-level configurations using translator plug-ins for each asset that needs to be managed. The low-
level infrastructure information needs to be obtained from the data services or provided by the human 
operators. An example is given that shows how the translation is done from MSPL-OP to I2NSF 
controller IPSec configurations. 

The Security Orchestrator can also request the translation to other formalisms recognised by the VIM, 
VNFM and NFV orchestrators so that the different resources and functions can be managed to ensure 
the respect of the specified security policies and agreements. 

Orchestration covers different tasks at various levels: 

• Virtualised Infrastructure Manager (VIM): controlling and managing the NFVI compute, 
storage and network resources 

• Virtualised Network Function Manager (VNFM): VNF instances life-cycle management 

• Network Function Virtualisation (NFV) Orchestrator: Network Service (NS) life-cycle 
management and policy management for NS instances 

• Security Orchestrator (SO): support the fine-grained, end-to-end and multiple-domain security 
deployment and configuration for enforcing and verifying that the security policies and SSLAs 
defined by the verticals are respected. 

• at E2E level: 
o Identification of Involved Security Management Domains for enforcement 
o Conflict and Dependency detection 
o Refinement from high-level policy to mid-level policy 
o Creation of E2E enforcement plan 
o Delivery of respective enforcement plan to each involved SMD 

• at SMD level: 
o  Identification of Security Assets capable of deploying the policy 
o Intelligent selection of best fitted asset based on context and requirements 
o Conflict and Dependency detection 
o Translation to low-level policy (e.g., TOSCA, final security asset configuration) 
o Enforce the orchestration policies. 

 

The SSLAs have been defined to manage the security agreements and automate the security life-cycle 
of network Slices provided by the operators to the users in the different vertical domains and 
applications. For this, a refinement process is defined that allows tuning the input policy specified in 
MSPL so that the Service Level Objectives are met.  

To complement this, RT-SSLAs are defined to allow the monitoring function to assess the SSLAs 
compliance during operation. The RT-SSLAs correspond to rules and algorithms that are used to inspect 
the network exchanges, and system and application traces, to detect any deviations or violations 
involving both security breaches and non-operating security functions. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 70 of 72 

Optimisation models and mechanisms are also presented based on chaining of virtualised security 
functions and micro services, and Multi-access Edge Computing (MEC). These mechanisms, based on 
distributed processing, MEC and micro-service chaining, are important for improving the performance 
of the network management actions, but also for improving the flexibility that facilitates the 
maintenance, upgrading and multi-party provision of different parts of the system and deployed 
applications.  

AI/ML techniques are used or can be used by many of the enablers presented in this document. This is 
especially true for the detection of anomalies and the optimisation of the management of the network 
and its functions. This is not discussed in this document and will be covered in the future deliverables 
D3.3 and D3.4 [1]. Here we focus more on data models and tool functionality. 

Finally, each of the enabler’s API specifications are described and a link is provided to obtain their full 
specification. These APIs allow the interoperation between the different enablers and can serve to 
construct the demonstrators that show how the security management can be automated to obtain 
what can be called closed-loop security management operation. 

The enabler providers in the INSPIRE-5Gplus project are implementing and testing their enablers. 
These providers are also working together to integrate the enablers to demonstrate how they 
interoperate and allow building close loop Zero-touch Service and network Management solutions 
(ZSM). There will be three main demonstrators covering 1) end to end policy-based security 
management, 2) trust and liability-based management, and 3) Moving Target Defence (MTD) 
management. The demonstrators 1 and 3 practically involve all the demonstrators and APIs described. 



D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 71 of 72 

References 

[1] The deliverables D3.3 (5G security new breed of enablers) and D3.4 (Smart 5G Security) will be 
made available in the web page: https://www.inspire-5gplus.eu/public-deliverables/ 

[2] https://www.inspire-5gplus.eu/wp-content/uploads/2021/05/i5-d2.2_initial-report-on-
security-use-cases-enablers-and-mechanisms-for_v0.14.pdf 

[3] http://www.anastacia-h2020.eu/ 

[4] http://hdl.handle.net/10201/101661 

[5] Zarca, A. M., Bernabé, J. B., Ortíz, J., & Skarmeta, A. Policy-based Definition and Policy for 
Orchestration Final Report. Anastacia H2020 European project deliverable D2.5. (online: 
http://www.anastacia-h2020.eu/deliverables/ANASTACIA-WP2-T2.1-UMU-D2.5-
PolicyBasedDefinitionAndPolicyForOrchestrationFinalReport-v1.0.pdf). 

[6] https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca 

[7] FP7 Project: https://cordis.europa.eu/project/id/610795 

[8] https://www.nist.gov/cyberframework 

[9] https://www.gsma.com/newsroom/all-documents/generic-network-slice-template-v2-0/ 

[10] Wendland, F., & Banse, C. (2018, August). Enhancing NFV orchestration with security policies. In 
Proceedings of the 13th international conference on availability, reliability and security (pp. 1-6). 

[11] https://www.inspire-5gplus.eu/wp-content/uploads/2021/05/i5-d3.1_5g-security-assets-
baseline-and-advancements_v0.7.pdf 

[12] P.Alemany, D.Ayed, R.Vilalta, R.Muñoz, P.Bisson, R.Casellas, R.martínez, “Transport Network 
Slices with Security Service Level Agreements,” 22nd International Conference on Transparent 
Optical Networks (ICTON), Bari, Italy, 2020. 

[13] Tharaka Hewa et. al.,”How DoS attacks can be mounted on Network Slice Broker and can they be 
mitigated using blockchain?” , 2021 IEEE 32nd Annual International Symposium on Personal, 
Indoor and Mobile Radio Communications (PIMRC) 

[14] https://doi.org/10.5281/zenodo.4569519 

[15] Molina Zarca, A., Bagaa, M., Bernal Bernabe, J., Taleb, T. and Skarmeta, A., 2020. “Semantic-
Aware Security Orchestration in SDN/NFV-Enabled IoT Systems. Sensors”, 20(13), p.3622. 

[16] https://www.enisa.europa.eu/publications/standards-and-tools-for-exchange-and-processing-
of-actionable-information 

[17] https://datatracker.ietf.org/doc/html/rfc6020 

[18] https://datatracker.ietf.org/doc/html/rfc4741 

[19] https://www.w3.org/TR/1998/REC-xml-19980210.html 

[20] https://www.gsma.com/newsroom/wp-content/uploads//NG.116-v2.0.pdf 

[21] https://www.iso.org/standard/71616.html 

[22] https://oasis-open.github.io/cti-documentation/ 

[23] https://www.enisa.europa.eu/publications/information-sharing-and-common-taxonomies-
between-csirts-and-law-enforcement/ 

[24] https://github.com/protocolbuffers/protobuf/releases/tag/v3.17.0 

[25] https://datatracker.ietf.org/doc/html/rfc8040 

[26] https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-intro-draft-

https://www.inspire-5gplus.eu/public-deliverables/
http://www.anastacia-h2020.eu/
http://hdl.handle.net/10201/101661
http://www.anastacia-h2020.eu/deliverables/ANASTACIA-WP2-T2.1-UMU-D2.5-PolicyBasedDefinitionAndPolicyForOrchestrationFinalReport-v1.0.pdf
http://www.anastacia-h2020.eu/deliverables/ANASTACIA-WP2-T2.1-UMU-D2.5-PolicyBasedDefinitionAndPolicyForOrchestrationFinalReport-v1.0.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.nist.gov/cyberframework
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc4741
https://www.w3.org/TR/1998/REC-xml-19980210.html
https://www.iso.org/standard/71616.html
https://oasis-open.github.io/cti-documentation/
https://github.com/protocolbuffers/protobuf/releases/tag/v3.17.0
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-intro-draft-openconfig-rtgwg-gnmi-spec-00


D3.2: Security drivers and associated software-defined models 

Copyright © 2019 - 2021 INSPIRE-5Gplus Consortium Parties  Page 72 of 72 

openconfig-rtgwg-gnmi-spec-00 

[27] https://datatracker.ietf.org/meeting/101/materials/slides-101-netconf-grpc-network-
management-interface-gnmi-00 

[28] https://www.etsi.org/deliver/etsi_gs/CIM/001_099/004/01.01.01_60/gs_CIM004v010101p.pdf 

[29] http://www.musa-project.eu/ 

[30] https://www.musa-project.eu/repositories 

[31] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phil Lopreiato, Grégoire Todeschi, K. K. 
Ramakrishnan, Timothy Wood: OpenNetVM: A Platform for High Performance Network Service 
Chains. HotMiddlebox@SIGCOMM 2016: 26-31 

[32] https://www.dpdk.org/ 

[33] ETSI GS MEC 003: “MEC - Framework and Reference Architecture” 
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf  

[34] Edge Computing for 5G Networks, February 2021.URL: https://bscw.5g-
ppp.eu/pub/bscw.cgi/d397473/EdgeComputingFor5GNetworks.pdf 

[35] ETSI GS MEC 010-2 V2.1.1: “MEC - MEC Management; Part 2: Application lifecycle, rules and 
requirements management”. URL: 
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/01002/02.01.01_60/gs_MEC01002v020101p.pdf 

[36] ETSI GS NFV-SOL 001 - Network Functions Virtualisation (NFV) Release 2; Protocols and Data 
Models; NFV descriptors based on TOSCA specification, 2018 

https://datatracker.ietf.org/meeting/98/materials/slides-98-rtgwg-gnmi-intro-draft-openconfig-rtgwg-gnmi-spec-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-netconf-grpc-network-management-interface-gnmi-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-netconf-grpc-network-management-interface-gnmi-00
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/004/01.01.01_60/gs_CIM004v010101p.pdf
http://www.musa-project.eu/
https://www.musa-project.eu/repositories
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf
https://bscw.5g-ppp.eu/pub/bscw.cgi/d397473/EdgeComputingFor5GNetworks.pdf
https://bscw.5g-ppp.eu/pub/bscw.cgi/d397473/EdgeComputingFor5GNetworks.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/01002/02.01.01_60/gs_MEC01002v020101p.pdf

