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Abstract 

This report describes the work done in the WP3 within the Task 3.3 “Exploration of additional AI 
techniques and solutions”. This task aims to explore the use of AI/ML driven security for 5G and future 
networks. It focuses on two aspects of “Security by AI/ML” and “Security of AI/ML”, the latter analysed 
especially from a software security perspective as the network assets including security functions 
themselves are becoming increasingly part of a distributed software ecosystem in communication 
networks. The security enablers investigated and elaborated in this deliverable aim to alleviate security 
issues in 5G and Beyond networks in a wide range from application layer to hardware-provided security 
primitives. 
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Executive Summary 

This deliverable presents the set of AI/ML (Artificial Intelligence/Machine Learning) driven enablers 
developed in Task T3.3 of the INSPIRE-5Gplus project. We have focused on main security use cases and 
integration aspects of AI/ML for cognitive security functions in 5G and Beyond 5G (B5G) networks: 
Detection and mitigation, data support for cognitive security, robust AI/ML and the security of AI via 
software security techniques and resilience schemes. Accordingly, this deliverable shows that AI/ML 
techniques in the pursued research improve the identification and detection of network traffic related 
to malicious activities, such as Botnet traffic, Distributed Denial of Service (DDoS) attacks, V2X 
misbehaviour, and Global Positioning System (GPS) spoofing. Additionally, an AI/ML driven approach 
optimizes security mechanisms in the form of Moving Target Defense (MTD), which requires proactive 
and efficient decision making.  

In the same security context, ML models should be protected against attacks affecting the training or 
the inference of the model. This aspect is particularly valid when dealing with distributed ML systems 
as with Federated Learning (FL), a key research topic for 5G/B5G networks. The study and work done 
on improving FL security, as well as the leveraging of Trusted Execution Environment (TEE) protection 
of ML models gives promising results in terms of feasibility and performance, highlighting the direction 
of future research and work. To this end, the developed enablers are presented and discussed in this 
document. 

Essentially, the enablers presented in this deliverable, achieved by the INSPIRE-5Gplus T3.3, 
contributes to the main objective of the project, identified as obtaining an automated security 
management and orchestration aligned with the Zero touch network & Service Management (ZSM) 
closed-loop specification, serving the end-to-end 5G/B5G infrastructure. 
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1 Introduction  

This document is a technical report for Task T3.3 of INSPIRE-5Gplus project. It provides a description 
and achievements of the WP3 T3.3. T3.3 elaborates on AI techniques by describing how to apply them 
to secure 5G services and infrastructure. In this deliverable, we organize our contributions for cognitive 
security into four main categories: Detection and mitigation, data support for cognitive security, robust 
AI/ML, and the security of AI. To this end, the developed enablers are presented and elaborated. 

In Section 2, we discuss the main topic of AI/ML and how it can be used as an inherent part of security 
in network security. This discussion aims to provide a balanced view on this topic. Then in Section 3, 
we describe our cognitive security enablers for 5G security via AI/ML. Then in Section 4, we take the 
alternate point of view and discuss the security of AI/ML itself. This is a crucial discussion since AI/ML 
controlled functions (including security enablers) can become attack vectors themselves. As a forward-
looking project considering Beyond 5G networks, the INSPIRE-5Gplus project has also elaborated on 
this aspect. 

From the implementation and interoperability perspective, the specification of APIs for D3.3 enablers 
is listed in Section 5.  D3.3 enablers will be utilized in Demo 1 and 3 as part of WP5 work in the INSPIRE-
5Gplus project. Therefore, we describe this connection to our project demonstrations in Section 6. 
Subsequently, we provide an overview of how our enablers exploit AI/ML for cognitive operation and 
how they are embedded in the overall INSPIRE-5Gplus landscape ─ to be detailed in T3.4. Finally, in 
Section 8, we conclude with a discussion on future perspective and a summary of our T3.3 work. 
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2 AI/ML and smart/optimized security techniques for future 
networks  

In this section, we concisely discuss the main topic of AI/ML and its crucial role in network security. 
This discussion aims to provide a balanced view on the pros and cons of INSPIRE-5Gplus cognitive 
security enablers for 5G security exploiting AI/ML. Please note that this treatment is not designed to 
be exhaustive considering the fact there are numerous detailed surveys and tutorials in the literature. 
Please refer to the sources in the references for such an undertaking. When security via AI/ML is 
considered, there is also the other side of the coin, which is the security of AI/ML itself, as discussed in 
Section 4. Moreover, such enablers do not operate in vacuum, but rather as part of a security 
management and enforcement framework. For 5G and Beyond 5G networks, ETSI ZSM specification is 
instrumental in that regard. Therefore, we also elaborate on these topics in this section. Since D3.3 
enablers will be utilized in Demo 1 and 3 as part of WP5 work, this overview is important for practical 
aspects of our T3.3 outcomes as well.  

INSPIRE-5Gplus has adopted AI/ML driven security enablers, their cognitive operation (in the sense of 
autonomous and situation-aware operation), and a compliant security management framework as a 
key focus for 5G and Beyond security in the project work. To this end, WP2 described an HLA 
architecture for creating a closed-loop system [1]. This loop follows the ETSI Zero touch network & 
Service Management (ZSM) [2] specification. The ETSI ZSM specification defines the way to automate 
the management of functions and end-to-end services. In the scope of the INSPIRE-5Gplus project, this 
management concerns the security applied to services, slices, and VNFs. This automation enables to 
quickly react to attacks, to dynamically adapt to changes, and eventually to pave the way to predicting 
self-configuration. Due to a higher complexity and an increase in supported devices or services, it 
becomes a challenge for a human operator to manage such a system. Moreover, the new 5G 
ecosystem aims to have a better delivery speed, agility, and adaptability with less operational costs. 
Autonomous supervision is a key approach to reach this vision. 

AI/ML based security solutions are promising due to their various characteristics. Firstly, they allow 
automation of various security tasks such as malware analysis, log processing, and threat intelligence 
assimilation for more efficient and rapid operation. Additionally, AI/ML algorithms provide attack 
detection and classification functions that may evolve for new emerging threats and even alleviate 
zero-day exploits. They can also deploy optimized countermeasures against security incidents in a 
proactive and reactive manner without human involvement. 

It is worth noting that the integration of AI/ML also brings up some technical challenges. For large-
scale and distributed systems like 5G and Beyond 5G networks, a critical issue is the scalability of AI/ML 
driven security schemes. The computational requirements for training and inference can be quite high. 
Moreover, providing a continuous integration and continuous delivery supported service through 
MLOps (Machine Learning Operations) requires different skills expected from data scientists, ML 
engineers and DevOps (Development Operations) professionals. This is compounded with the 
communication requirements for distributed and edge/fog computing-based AI/ML schemes. For 
distributed ML setups such as federated learning, data transmissions themselves should be secured 
and preserve privacy [3]. Another issue is the data availability for learning schemes. For supervised 
learning, that may be the quality of training data while for reinforcement learning, that may be the 
ability to try different actions to get the reward data, which may not be possible due to operational 
constraints. Therefore, the policy universe may not be explored adequately. 

The security of AI/ML is another research question that has attracted a lot of attention lately. The role 
of AI/ML for critical operations such as autonomous management or security in 5G networks brings up 
the question of trust and reliability of these schemes. Models should be secured and robust in the 
learning and inference phases (e.g., against poisoning and evasion attacks) [4]. This issue is also related 
to the loss of control and visibility for security actions once AI/ML driven closed-loop and autonomous 
security are deployed.  

To describe INSPIRE-5Gplus project’s contributions via T3.3 efforts, enablers are described and 
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discussed in the following sections, from the security via AI/ML (from the perspective of specific 
security functions) to the security of AI/ML. This set of enablers and security use cases is evidently not 
an exhaustive but yet a critical group for achieving cognitive security for 5G and future networks. 
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3 Cognitive security enablers for smart 5G and Beyond 5G 
security 

The following sections describe the security enablers developed in the INSPIRE-5Gplus T3.3. These 
sections explain how each asset is developed and how it goes beyond the state-of-the-art. 

3.1 Detection and mitigation via AI/ML in 5G and Beyond systems 

3.1.1 MTD control and optimization using AI/ML 

3.1.1.1 Problem and challenges 

Moving Target Defense (MTD) is a proactive security strategy that changes and moves software and 
virtual resources to shift the attack surface of a network. Such a strategy aims to increase the difficulty 
of attackers to perform reconnaissance and forces them to act based on the data gathered in a 
restricted time frame. However, many challenges are presented against the feasibility of such a plan 
of action in real scenarios. MTD’s main problem is the possibility of disrupting the protected network 
service, by moving its components on runtime, redirecting traffic, or changing network interfaces. 
Therefore, MTD strategies should be optimized to reduce their impact and guarantee that the 
performance requirements are satisfied while ensuring its security utility.  

Furthermore, in contemporary telecommunication setups like multi-access edge computing (MEC), 
edge nodes improve the performance of telecommunication services with better-distributed data and 
computation made closer to the end-users. However, such nodes have limited resources compared to 
conventional data centres. Therefore, non-functional components like security solutions should be 
aware of their resource consumption and minimize the overhead. This is particularly true for MTD 
operations as, for instance, migrating virtual network functions would require additional resources, 
multiplying what is already being used. 

In order to alleviate these problems and challenges, OptSFC (Optimizer for Security Functions) aims to 
improve the management of security function configuration, composition, and resource efficiency. 
Focusing on MTD mechanisms, OptSFC employs ML techniques to train models defining decision 
policies on the MTD actions to take and considering the constraints mentioned above. Using ML 
presents further challenges as well. In particular, it can be challenging to explain the choices of a policy 
generated using deep neural network-based techniques, leading to the concern of explainable AI, 
though they generally give the best results in terms of performance. This is important as every 
modification of the network should be “humanly explicable” for accountability reasons. Another 
challenge is the dynamic nature of 5G/B5G networks, which changes in size and in its characteristics. 
Hence, the ML model’s genericness needs to appraise all possible network conditions and operate with 
the same performance. 

3.1.1.2 State of the art analysis 

The optimization of decision problems using ML has been leveraged in many diverse applications using 
reinforcement learning (RL). Here, an agent interacts with a defined environment using the operations 
that are made available and learns based on the rewards and penalties taken from the environment’s 
output [5]. The environment is mathematically modelled using the Markov decision process (MDP), a 
discrete-time stochastic control process used to model the set of states, actions, rewards, and 
penalties. A model can further define the specific behaviour of the agent, reducing its exploration tree 
during training and consequently reducing its learning phase cost. This is called model-based RL and 
can be efficient when learning complex tasks, but it can also have limited performance in case the 
modelled constraints are biased and limit the solution to a local optimum. The so-called model-free RL, 
on the other hand, has greater costs on the training phase, due to its larger exploration space, but 
generally leads to a model with greater performance by computing the Bellman-optimality [6].  
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Today, model-free RL techniques are being used the most, being more accessible owing to greater 
computational resources available, coupled with state-of-the-art ML techniques used to approximate 
the Bellman-optimality using deep neural networks (DNNs), instead of the classic dynamic 
programming approach. These gained the name of deep RL (DRL) and include algorithms such as deep 
Q-network (DQN) [7], Dueling agents [8], asynchronous actor-critic (A3C) [9], NoisyNet [10], or 
combinations of them (e.g., the DeepMind’s Rainbow [11]). 

The application of DRL for cybersecurity is gaining widespread attention and has found early usage for 
MTD optimization. However, these applications are limited to specific environments such as in-vehicle 
networks, web applications, enterprise networks, or theoretical game-theory models [12] [13]. The 
MTD optimization in telecommunication networks such as 5G and beyond is still limited and to be 
explored. 

3.1.1.3 Solutions descriptions and advancements 

OptSFC is designed as an offline training tool that generates an optimized policy of a security function 
involving the management and orchestration of virtualized network resources. The RL model resulting 
from the offline training allows deploying the security function in the 5G network with autonomous 
and efficient prevention and mitigation actions. 

AI and ML contributions 

The training phase occurs in a 5G testbed which uses different NFV infrastructures in a Multi-access 
Edge Computing (MEC) setup. Here, an MDP model collects and processes the testbed’s data in near 
real-time. Such data is also collected at the deployment phase, used by the RL agent for its decision 

process. The MDP defines the environment as a tuple (S, A, P, R, ɤ), where:  

• S is the set of all possible states. In practice, at each time t, a state St is defined by the status 

of the resources to be protected, i.e., 5G core VNFs and network services (NS) such as the user 
plane function (UPF), the vEPC, the gNBs at the different base stations, and other NSs used for 
the network slices management and the functional NSs hosted in the network slices and used 
by the operator’s clients. The status of a resource is defined by its runtime condition (running, 
idle, voluntarily stopped, or accidentally stopped), the resource consumption (CPU, RAM, and 
disk), its network metrics (I/O frequency, bandwidth, latency, etc.) and whether an anomaly 
detection system found it as a target of an attack or an anomaly. The total number of possible 

states in the environment is |S| = Nresources x (1 + Nconsumes + Nnet_perf + Nattacks), where 

Nresources is the number of resources to be protected and on which we can perform MTD 

operations, 1 formally denotes the constant set of features like the runtime condition and 

other characteristics whereas Nconsumes and Nnet_perf are respectively the number of resource 

consumption metrics and network metrics, which are checked against established 

requirements. Finally, Nattacks is the number of attacks detectable by an anomaly detection 

system running in the infrastructure. This endows the OptSFC ability to act reactively, against 
detected attacks, and proactively, based on the measured performance and other passive 
metrics.  

• A is the set of actions ai, I < NA, the RL agent can take. In practice, in this MDP, the actions 

are the different MTD operations available for each resource to be protected. Thus, the action 

space of |A| is upper-bounded by NA = NMTD x Nresources + 1, where NMTD is the number of 

MTD operations applicable on a network resource, and 1 represents the action of “doing 
nothing”. 

• P is the transition probability matrix representing the probability that an action ai changes a 

specific state s to the state s´, i.e.∀ a ∈ A, Pa
ss’= P[St+1= s´ | St = s, At = a] . This matrix is 

updated during training and represents the uncertainty of the RL agent in reaching its goal 
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with a specific action: For instance, the OptSFC agent can decide to perform the action ai in 

order to mitigate an ongoing attack, knowing this action could not succeed with a probability 

of 1–- Pa
ss’ . 

• R is the reward function that defines the reward obtained at time t+1 when performing an 

action ai from a state s at time t, i.e., Ra
s = E[ Rt+1 | St= s, At = a].In practice, the 

reward/penalty will be given based on four factors:  

1) the status of the protected resource (e.g., a penalty is given when the resource stops 
accidentally after an agent’s action); 

2) the distance of the measured metrics from the established minimum and maximum 
requirements (e.g., the bandwidth used by a resource is less than what is needed, which can 
be computed based on the frequency of I/O operations, and inferior to the requirement);  

3) the mitigation of an attack, which is rewarded proportionally to the threat that the attack 
poses, defined based on the Common Vulnerability Scoring System (CVSS) [14], an industry 
standard. Vice-versa, when an attack occurs, the MDP scores a penalty, i.e., a negative reward. 
Finally; 

4) the cost of an agent’s action, as each MTD action has a different cost in terms of resource 
consumption and “time to enforce”, translated into a negative reward (i.e., a penalty) when 
the action is performed. Another factor that is considered is the importance of each protected 
resource with respect to the 5G infrastructure. For example, the vEPC is a core function upon 
which all network slices depend; thus, it is more critical than other network services. This can 
be introduced in the MDP through higher rewards or penalties compared to when the same 
action is performed on a less critical resource; 

• ɤ is the discount factor used to define the importance of the immediate reward with respect 

to future rewards. This parameter has a value between 0 and 1: a value close to 0 indicates that 

immediate rewards are more relevant, vice versa, if ɤ is close to 1, then the future rewards are 

more relevant than the immediate ones. In practice, our use case is a continuous task, thus, this 
hyper-parameter will be close to 1, giving more relevance to the long-term rewards, and can be 
fine-tuned during training.  

The policy 𝜋 will define the behaviour of the agent, i.e., the probability distribution of the actions in A 
for every state in S. To optimize the policy, this first needs to be evaluated. Therefore, we have to 
compute how good it is to take an action a when in a certain state s. This is done using the Q-function, 
that gives to each couple (s,a) the Q-value defined as follows: 

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

which is a recursive function decomposed by the immediate reward (Rt+1) of the actual action a in the 
state s, summed to the discounted Q-value of the next state (where the next action At+1 is defined by 
the policy 𝜋). Intuitively, the optimal policy 𝜋max is the policy that has the greatest Q-value for all states. 

In our model, the optimization translates into finding the best policy that compensates for the action 
cost of the MTD and gets the highest reward based on: 1) the mitigation of an attack, 2) the reduction 
of a threat, 3) the increased performance of a service/resource, and 4) the cost of the MTD operation 
in terms of resource usage.  

It is important to note that for the reactive functionality, corresponding to mitigating detected attacks, 
the MDP would rely on an anomaly detection system. Such systems are never 100% accurate, thus, 
there might be cases where an attack is ongoing or successful but it has not been detected. This 
situation is represented in our game-theory model as the discrepancy between the network state 
observed by the RL agent and the real state of the 5G network. We are dealing indeed with an 
incomplete-information Markov process. 

During the training phase in a testbed, as attacks are being simulated, it is possible to measure the 
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effectiveness of the OptSFC policy against undetected attacks by scoring a “real reward” R′ in parallel, 

differing from the agent’s observation as it also scores the rewards/penalties of non-detected attacks. 
This would help in spotting policies that are well-performing at the proactive point of view. 

When generalized or used with a different set of actions A′, the MDP model will enable the 

deployment of autonomous RL agents for various security orchestrations in 5G and NFV architectures, 
not only limited to MTD. 

Last but not least, the explainability of the RL model is another fundamental challenge found in many 
ML studies related to critical environments, including 5G/B5G networks. RL is concerned as state-of-
the-art RL algorithms use DNNs as well, which are not explainable by nature (as stated in Section 
3.1.1.1). OptSFC (presented in the previous two Sections) models the MDP and the reward system 
through expert knowledge and processing of monitoring data. Thus, it is possible to implement 
different explainable RL (XRL) methods present in the literature [15], such as the XRL via reward 
decomposition [16]. In this method, rewards can be classified according to semantically meaningful 
reward types (e.g., resource consumption rewards, QoS rewards, and security rewards), allowing to 
"explain" the RL agent’s decision in terms of trade-offs among these reward types. 

Current Implementation 

A Proof of Concept (PoC) has been implemented to investigate the potential of DRL for smart control 
and security decision schemes in 5G environments. This simulates a simplified drone network slice 
hosted by a 5G operator, which uses two different NFV infrastructures, a core node and an edge node. 
The limitation of this first simulation is that it omits the integration of network metrics and resource 
consumption data, focusing on the proactive and reactive functionalities, and the mitigation of 
detected and undetected attacks. 

We train and evaluate six agents using various DRL algorithms: a deep Q learning network (DQN), an 
advantage actor-critic (A2C), and a proximal policy optimization (PPO), each having two variants based 
on the deep neural network (DNN) used, namely a multi-layer perceptron (MLP), and a convolutional 
neural network (CNN). A third variant using long short-term memory (LSTM) was used and then 
dropped for its inefficient and unprofitable results. The MLP used has 64 layers each having 64 
perceptrons each and using the ReLU activation function at each layer. The agent receives the 

environment’s observation as a vector of |S| x c bits, where |S|is defined by the formula in the 

previous section (excluding Nconsumes + Nnet_per) and c is a constant representing the length in bits of a 

single state s. Each bit represents a type of attack and the targeted resource, and it is set to 1 if the 

attack is successful and not mitigated, while it is zero otherwise. On the other hand, the CNN takes as 

input an image, which is the conversion of the observation vector into a B&W image with |S| x c 
pixels. It performs 3 convolutions, and extracts 512 linear features. To use CNNs, the observation 

vector is converted into an |S| x c pixel image, each pixel representing a bit in the vector 

representation. The MDP model has been implemented with OpenAI Gym, and the DRL agents using 
Stable-Baselines [17] and Pytorch. 

3.1.2 Lightweight and space-efficient vehicle authentication enhanced with misbehaviour 
detection 

3.1.2.1 Problem and challenges 

Pervasive Vehicle-to-everything (V2X) connectivity and the emergence of effective data-driven 
methods based on AI/ML drive a paradigm shift towards Connected and Automated Mobility (CAM) 
services and applications [18]. A key functionality in vehicular systems that can benefit from AI/ML is 
security, which is essential for ensuring road safety in CAM environments. V2X security threats and 
attacks can either originate from malicious outsiders which are vehicles/users exogenous to the 
original system, or insiders which are already authenticated and possess valid credentials to interact 
with other legitimate entities in the system. 
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While outsider attacks can be efficiently addressed even in highly dense V2X scenarios with a proper 
extension of the 5G Authentication and Key Agreement (5G-AKA) procedure, as shown in [19], insider 
attacks are often difficult to detect and contain, particularly when attackers behave intelligently while 
conforming to normal system behaviour. For example, an already authenticated vehicle may be able 
to intentionally transmit false kinematic information (e.g., position, speed, acceleration, heading-angle 
data) in its broadcast messages and cause disruption in the network. Seemingly abnormal vehicular 
activity originated from malicious actors (e.g., vehicles) may take the form of highly sophisticated 
attacks. Such malicious/selfish behaviours from such rogue insiders are commonly referred to as 
misbehaviours in V2X, and they pose a serious threat when transmitting erroneous/incorrect data in 
safety-critical situations. Ensuring the semantic correctness of exchanged V2X information is thus of 
paramount importance. 

3.1.2.2 State of the art analysis 

In existing literature, several data-driven approaches similar to conventional intrusion-detection 
systems have been proposed for detecting misbehaving entities in V2X systems [20]. For example, ML-
based detection techniques have demonstrated promising results in misbehaviour detection while 
leveraging vehicular data generated in V2X scenarios [21] [22] [23]. However, current misbehaviour 
detectors are not designed to dynamically improve their detection experience according to evolving 
attack patterns in rapidly changing V2X environments. In addition, the use of security thresholds in 
detectors (e.g., anomaly score-based methods or reputation/trust assessment criteria) limit their 
applicability to very specific V2X scenarios. For example, when a vehicle exceeds the maximum beacon 
frequency threshold, its behaviour is considered as a potential denial-of-service attack. The detection 
threshold must be carefully selected, since a large value may result in excessive losses due to high 
detection delays, while a small value may result in wasting operational resources on investigating false 
alarms. Finding, thus, an optimal threshold which optimally balances the detection delay-false positive 
trade-off, is a challenging problem. To this end, RL can be identified as a highly effective tool that can 
consistently improve the detection experience over time while interacting with unknown 
environments without relying on security threshold values [24]. Unforeseen changes in exchanged 
measurement streams which may go beyond any anticipated variability in traffic behaviour (e.g., due 
to either naturally drifting mobility patterns or unpredicted malicious activity patterns) in conjunction 
with insufficient training data pose a challenge (e.g., model over-fitting) to conventional deep-learning-
based attack identification methods. 

3.1.2.3 Solutions descriptions and advancements 

AI and ML contributions 

Misbehaviour detection constitutes a sequential decision-making process that can be modelled as an 
MDP [25]. The action of misbehaviour detection will change the environment based on the decision 
(i.e., label resolution for malicious V2X information) of either normal or anomalous behaviour at time 
t; subsequently, the next decision at time step t+1 will be influenced by the changing environment at 
previous time-step t. In the context of V2X, vehicle’s mobility data constitutes a time-series-based 
report consisting of periodic beacon messages. Each beacon message includes information on the 
vehicle’s speed, position, heading angle, etc., and this information is evolving over time along the 
vehicle’s trajectory. Hence, misbehaving vehicles can be potentially detected by sequentially analysing 
their mobility patterns using an RL model. In what follows, we briefly discuss the components 
pertaining to the RL model and applied for misbehaviour detection. 

The agent is the core part of the RL model. It takes the time-series (i.e., vehicle’s mobility data) and 
prior related decisions as inputs (i.e., state 𝑠), and generates the new decision made (i.e., action 𝑎) as 
output. Each action made by the agent is rewarded (i.e., reward 𝑟) as feedback, and the agent 
subsequently updates its model in order to improve the accuracy in decision-making. The iterative 
model update is performed through Q-learning [26], i.e., 



D3.3: 5G security new breed of enablers 

Copyright © 2019 - 2022 INSPIRE-5Gplus Consortium Parties  Page 22 of 86 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑟𝑡 + 𝛾max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)), 

where 𝛼 and 𝛾 denote the learning rate and discount factor, respectively. The environment of the RL 
model controls the training of the agent. It takes the action 𝑎 performed by the agent as its input, and 
consequently generates a reward 𝑟 and the next environment state 𝑠 for the agent. The environment 
is a time-series repository of vehicles’ mobility data and contains a large population of periodic beacon 
messages with attack labels. The state contains two sequences: the sequence of previous actions and 
the current vehicle’s time-series data. According to the state design, the next action taken by the agent 
is dependent on the previous actions and the current vehicle’s information. The action space is defined 
as 𝛢 = {0,1}, where 1 indicates the detection of an attack and 0 represents the normal behaviour. In 
a given state 𝑠, the agent selects the action as 

𝑎 = 𝑎𝑟𝑔max
𝑎
𝑄(𝑠, 𝑎). 

The reward 𝑟 is offered to the agent when an action 𝑎 is taken in state 𝑠. In particular, the agent is 
given a positive reward for correctly identifying the misbehaviour, i.e., True Positive (TP), or a normal 
state, i.e., True Negative (TN); otherwise, a negative reward is given to the agent for incorrect 
identification of a normal state as an attack, i.e., False Positive (FP), or an attack as a normal state, i.e., 
False Negative (FN). In safety-critical V2X scenarios, FNs are more hazardous than FP alarms; thus, an 
agent is penalized more for FN actions than for FPs. The reward function can be expressed as 

𝑟(𝑠, 𝑎) = {

𝐴, 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝑇𝑃,
𝐵, 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝑇𝑁,
−𝐶, 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐹𝑃,
−𝐷, 𝑖𝑓 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝐹𝑁,

 

where A, B, C, D >0, with A>B and C<D. The effectiveness of our proposed RL-based approach applied 
for V2X misbehaviour detection is demonstrated in [24] by performing extensive experiments on 
specific parts of the open-source VeReMi dataset [27]. 

Current implementation 

In this section, we evaluate the effectiveness of the RL-based approach applied for V2X misbehaviour 
detection by performing experiments using the VeReMi dataset. The VeReMi dataset includes 19 
misbehaviour attack types and models two road traffic densities under each attack scenario: high-
density (37.03 vehicles per square km) and low-density (16.36 vehicles per square km). For each attack 
scenario, a log file per vehicle is generated, which contains information transmitted by neighbouring 
vehicles over its entire trajectory. Each scenario contains a ground truth file to record the observed 
behaviour of all participating vehicles. The exchanged messages constitute a three-dimensional vector 
for position, speed, acceleration and heading angle features. The proportion between misbehaving 
and genuine vehicles is set to 30% - 70%, respectively, for all the simulations. Table 1 depicts the results 
of the RL-based detection per attack type. 

 

Type Attack Accuracy Precision Recall F1-Score 

1 Constant Position 0.9868 0.9588 0.9984 0.9782 

2 Constant Position Offset 0.9981 0.9629 0.9982 0.9803 

3 Random Position 0.9886 0.9642 0.9985 0.9810 

4 Random Position Offset 0.9886 0.9632 1 0.9812 

5 Constant Speed 0.9988 0.9968 0.9995 0.9982 

6 Constant Speed Offset 0.9923 0.9766 0.9978 0.9871 

7 Random Speed 0.9985 0.9987 0.9963 0.9975 

8 Random Speed Offset 0.9915 0.9774 0.9945 0.9858 
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9 Sudden Stop 0.9811 0.9274 1 0.9623 

10 Disruptive 0.9896 0.9664 1 0.9829 

11 Data Replay 0.9894 0.9656 0.9999 0.9825 

12 Delayed Messages 0.9666 0.9012 0.9976 0.9470 

13 DoS 0.9999 0.9999 1 0.9999 

14 DoS Random 0.9997 0.9996 1 0.9998 

15 DoS Disruptive 0.9991 0.9984 1 0.9992 

16 Traffic Congestion Sybil 1 1 1 1 

17 Data Replay Sybil 0.9938 0.9981 0.9809 0.9894 

18 DoS Random Sybil 1 1 1 1 

19 DoS Disruptive Sybil 0.9972 0.9998 0.9940 0.9970 

Table 1: Detection performance per attack type 

3.1.3 Anomaly detection in 5G networks 

3.1.3.1 Security Analytics Framework 

Problem and challenges 

The rapid advancements of digital technologies have resulted in considerable increase of new 
technologies, such as SDN/NFV, network slicing, multi-tenancy, edge and cloud computing. These 
advancements have also led to an increased attack surface that constitutes a rich source of 
vulnerabilities that can be exploited by malicious threat actors. 

Anomaly detection is a significant branch of network security that detects abnormal traffic flows in the 
presence of an attack in a network. It relies on the assumption that normal data follow a particular and 
unknown distribution, whereas anomalies originate from different (also unknown) distributions. In 
traditional security management, intrusion detection takes place after several weeks that the incident 
was initiated, causing severe damage in the meantime. ML is a promising technique that can address 
some of the challenges concerning the analysis of encrypted traffic and detection of unknown attacks 
(e.g., zero-day attacks and advanced persistent threats). ML can help to automatically and efficiently 
detect anomalies that are not detected by traditional intrusion detection techniques (e.g., Deep Packet 
Inspection (DPI) and signature-based techniques).  

State of the art analysis 

Deep Learning (DL) is a ML branch that relies on neural networks that can be used for detecting such 
anomalies. This section provides an insight on the current State-of-the-Art. Neural networks have been 
used successfully in several fields, such as computer vision, medical diagnosis, fraud detection and 
network intrusion detection. 

Neural networks are composed of an input layer, multiple hidden layers and an output layer. Neural 
networks can have different structures of their hidden layers, such as fully connected layers, 
convolutional layers, pooled layers and many others. Use of these different components give rise to 
different neural networks architectures, such as MLP, CNN and LSTM networks. 

In the literature, all these methods have been applied successfully in network intrusion detection 
management, but they are applied to solve very specific problems and rely on public datasets for 
training and tests. Important challenges remain to be able to obtain a more generic solution and deal 
with real network traffic that is constantly changing (i.e., less predictable). In an article published in 
2018 [28], the authors describe the use of sequential LSTM autoencoders on detecting intrusions found 
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on the ISCX IDS 2021 dataset [29]. Their experiments demonstrate that LSTM autoencoder with mean 
or max pooling achieve the highest F1-Score metric (0.8538) compared to other unsupervised 
solutions, such as LSTM, Gated Recurrent Unit (GRU) and Bi-LSTM. F1-Score is a formula that measures 
the model’s accuracy on a dataset. In [30], the authors use improved CNNs for detecting intrusions in 
the KDD99 dataset [31], demonstrating higher accuracy (99.23%) than Support Vector Machines (SVM) 
and Deep Belief Network (DBN) algorithms. In [32], the authors describe a revised version of the LeNet-
5 model for network threat classification (originally designed by LeCun et al. in 1998), achieving higher 
accuracy (97.53%) compared to the existing LeNet-5 model (95%) and malicious code identification in 
other deep learning schemes. In [33] the authors use the CIDDS-001 dataset[34] to evaluate the 
performance of an LSTM model, achieving higher accuracy (0.8483), recall (0.8834) and precision 
(0.8514) compared to other models, such asIe Bayes, SVM and MLP. The classification accuracy, 
precision, recall and F1-Score are the most popular metrics used for evaluating a neural network 
model. 

Solutions descriptions and advancements 

AI and ML contributions: In the course of INSPIRE-5Gplus project, there are different enablers for 
conducting anomaly detection on network traffic: i) the MMT Security Monitoring Framework [93] and 
ii) the Security Analytics Framework. Both enablers will be integrated on a 5G Standalone environment, 
comprising cloud and edge computing nodes that will provide the source data for training the models. 
In the “features” definition phase, we compare features used in known intrusion detection datasets 
and define the features that we are going to use in the training phase. 

MMT Security Monitoring Framework: Regarding the model architecture, we are conducting an 
analysis of existing neural network models in the literature in order to design an appropriate 
architecture that provides an acceptable trade-off between time complexity and performance. The AI 
discipline offers variety of structures and we particularly focus on DL since the use of multiple layers 
to progressively extract higher-level features from the raw input is well adapted to network traffic 
analysis. The choice of a particular structure to solve real-world problems is crucial in order to obtain 
precise and efficient results. In the scope of intrusion detection, there are several widely popular 
models. The DBN is a model created by stacking multiple Restricted Boltzman Machines. While DBNs 
are fast to train in an unsupervised way, they present limitations in the training due to the use of 
approximated gradients [35]. Another example of DL technique is the Deep Autoencoder (or Stacked 
Autoencoder, SAE). It is an unsupervised method with an encoder-decoder structure and a hidden 
space that allows obtaining a better representation of latent features and an overall dimensionality 
reduction of the input. However, as SAEs are made in order to reconstruct the input, in the case of 
intrusion detection they can only be modelling normal traffic, as it is shown in several other works [36]. 
This means providing a big training dataset containing only normal traffic, which in many cases is not 
a realistic possibility. CNN is yet another DL method containing a multi-layered feed-forward neural 
network (convolutional layers) capable of learning hierarchical features. Whereas the structure of the 
model tends to be more complicated than other techniques, it generally tends to give highly accurate 
results. Recent works [37] [38]  have shown the advantage of combining different techniques to create 
hybrid models. In the scope of all the above, we strive to adopt a combination approach that uses SAEs 
and CNN, similar to what is found in the literature [38]. Thanks to such approach, we utilize the latent 
feature discovery and dimensionality reduction of SAEs, with the good performance of CNN. 

Security Analytics Framework: While initially, the Security Analytics Framework (SAF) was based upon 
the open-source project Apache Spot, due to its inactivity, we decided to begin from scratch an 
updated enabler for anomaly detection (in the form of an anomaly detection framework), based on 
Tensorflow, Keras and Tensorflow Servings. These solutions are more manageable from deployment 
perspective. As the core component of the SAF, we have selected a deep learning-based model, 
considering two facts: i) deep architecture models are able to capture the underlying data distribution 
more effectively than swallow models, and ii) they are able to learn useful representations in high-
dimensional data. To this end, autoencoders are suitable for identifying outliers in the network traffic, 
that could be generated due to a potential attack. In intrusion detection, autoencoders are trained 
using normal traffic, so they are able to flag a network flow as suspicious, since the characteristics of 
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the network flow lead to exceeding the specified thresholds. The threshold is specified by the 
infrastructure owner or the service provider and it can take the form of a decision criterion based on 
two metrics: i) reconstruction error, and ii) energy-based score. Whenever a sample is above/below a 
selected value/threshold, then it is flagged as an outlier. The reconstruction error is based on the mean 
absolute error or the mean square error. In our case, our fully-connected autoencoder has been 
trained on the NSL-KDD dataset, achieving a performance of ~73%. However, since this is still lower 
than what has been reported in the literature by similar approaches, we continue processing the 
architecture, in order to increase performance. The size of the latent layer seems to be important in 
the overall performance. 

3.1.3.2 Advanced Encrypted Traffic Analysis 

Problem and challenges 

There are various challenges that need to be addressed for analysing encrypted traffic, e.g., traffic 
clustering, classification, anomaly detection, etc. [39] With respect to both traffic classification and 
anomaly detection, there is a particular need to perform malware and attack detection and 
identification. The growing popularity of traffic encryption increases user security at the individual 
level, but at the same time it has become a big challenge for traffic analysis, imposing the need to 
explore improved analysis techniques based on other criteria, such as behaviour analysis.   

Compared to ordinary traffic, most of the information within encrypted traffic is meaningless, as it is 
the payload that is encrypted (e.g., TLS at OSI layer 4) or even the header is encrypted (e.g., IPsec at 
OSI layer 3). It thus implies that there are significantly less features that a tool can gather when using 
DPI techniques. With the introduction of network encryption techniques, such as the TLS protocol, the 
accuracy and efficiency of conventional Network Intrusion Detection Systems (NIDS) that were using 
rule and signature-based monitoring detection methods is greatly reduced, in some cases rendering 
them completely useless. Moreover, the variety and dynamicity of the traffic malware poses a 
significant challenge on traffic monitoring tools in terms of flexibility and generalization of their 
algorithms. New encrypted traffic analysis tools need to be adaptable not only to ever evolving attacks, 
but also to new protocols, policies and potentially to new breakthrough technologies that are 
constantly being developed. It is also important to note that encrypted traffic analysis, similarly to non-
encrypted one, is most useful when done in an on-line, real-time manner. Independent of the 
particular use-case, most applications and security functions require the ability to directly react to 
what is happening in the network on the fly, especially when it involves the detection of malware. 
Finally, one of the most obvious but equally important challenges of encrypted traffic analysis is the 
precision of the results. While high accuracy of the analysis is expected, simultaneously the system 
cannot be prone to high number of false positives either. 

State of the art analysis 

In order to tackle the aforementioned challenges, numerous different approaches for executing 
analysis of encrypted traffic have emerged during the last years.  

A common way to deal with encrypted communications is to use a decryption platform, which decrypts 
the traffic in real time and inspects its contents. For instance, in case of HTTPS malware, these are 
interceptor proxies (e.g., TLS interception). Such a strategy however has multiple drawbacks. Firstly, it 
leads to a drop in network performance, increasing the latency. Moreover, it involves high 
computational complexity and constant updates of certificates and protocol keys, while 
simultaneously having a potential of violating different policy standards, such as privacy.  

Another rapidly developing field used for encrypted traffic analysis is AI. While many ML methods give 
decent results, they are not without some limitations.  Depending on the particular ML algorithm, the 
mode of learning can be divided into three categories: supervised, semi-supervised, and unsupervised. 
The first two classes, where we can find methods such as Hidden Markov Models, RIPPER, AdaBoost, 
SVMs, C4.I Naive Bayes [40] for supervised group, and k-means or k-nearest neighbour for semi-
supervised [41], are relying on hand-crafted traffic features and involve the need for voluminous 
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labelled datasets. This can be time consuming, costly or even impossible in some cases. Moreover, 
many of the important characteristics that can imply malicious traffic that are known to experts at a 
given time can quickly become outdated. The combination of labelled dataset requirements with the 
reality of rapid and constant growth of completely new attacks, as well as class imbalance problems 
for the dataset can significantly affect the final ML algorithm accuracy. Concerning the above-
mentioned ML methods categories, only unsupervised algorithms, such as Principal Component 
Analysis (PCA) do not require labelled datasets. However, in the case of these methods, accuracy is still 
not high enough, and the features still need to be hand-crafted. That being said, recently developed 
DL methods are especially gaining in popularity in the field of encrypted traffic analysis. DL methods 
do not require hand-crafted features, which makes them possibly much more appropriate for the 
analysis of encrypted traffic. One of the big advantages of using such techniques is that they are able 
to work on the dataset without feat–re mining - it is the algorithm itself that “chooses” the most 
important features, as well as latent features, directly from input data. DL methods used for encrypted 
traffic analysis apply various models [42][43], from MLP, CNNs, Recurrent Neural Networks (RNNs), to 
Stacked and Variational Autoencoders. Such models are quite flexible, thanks to the fact that they are 
able to work on packet-level features, flow features, or raw data.  Moreover, some of the DL 
techniques (e.g., Autoencoders), instead of trying to learn and categorize normal and malicious traffic, 
a technique that can quickly become obsolete, they aim at modelling only the normal traffic. As they 
are able to reconstruct very adequately the normal traffic (with a low error rate between the input 
sample and reconstructed one). In this way, we can set a threshold of error rate of the reconstructed 
sample and consider any sample that exceeds it as possibly anomalous. This makes these techniques 
particularly flexible and adaptable for detecting so-called zero-day attacks. On the other hand, DL 
techniques are known to be both computationally challenging and require a large volume of data in 
order to achieve decent accuracy of the results. 

Solutions descriptions and advancements 

AI and ML contributions: The solution that is being developed in INSPIRE-5Gplus is based on the 
integration of numeric feature extraction techniques, the MMT-Probe (part of the MMT Security 
Monitoring Framework) for data capture and analysis, and algorithms based on a combination of DL 
methods. Currently, we have created a DL model that consists of combining SAEs and CNNs in order to 
examine and classify encrypted traffic. 

In our case, we experiment with different configurations of Autoencoders utilizing different hidden 
layer numbers, namely: i) symmetric Deep Autoencoder with 3 layers; and; ii) symmetric Deep 
Autoencoder with 5 layers.  

Regardless, in both cases, the use of the feature extraction and translation done by the MMT-Probe is 
the same. The role of the MMT-Probe is to capture and translate raw traffic (online or offline) to 
calculate the statistic features in the form of numeric values. Our system focuses on gathering traffic 
packets into flows, i.e., a flow sequence of packets from a source entity to a destination and vice-versa. 
Using flows, we then calculate different statistics (e.g., mean or standard deviation of flow lengths, 
times). These statistics will vary depending on the particular protocol (e.g., TLS) that are being used. 
The full set of features is then fed in the form of a numeric matrix input into the DL 
component.  Currently, we are using a total of 60 features as input to the DL module. The general 
procedure followed is shown in Figure 1. The encrypted traffic is processed by the MMT-Probe and the 
results are fed to the DL Module that will provide a verdict to the Application (e.g., the security 
management function). 
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Figure 1: Deep Learning processing schema 

In general, regardless of the particular utilisation of the DL module (which is described below), the 
module has two modes of working: training and evaluating modes.  

In the training mode, the DL learning algorithm is executed in order to create the desired model. The 
input data is used to learn the weights that need to be applied based on a back propagation technique. 
The model is tuned and optimised, before it is finally validated on not yet analysed data. Once the 
desired accuracy is reached, the model is ready to be used. 

In the evaluation mode, the DL model is used in order to generate its evaluation of new data flows. 
The final outcome of the solution is the evaluation of a flow being malicious or normal. 

In the current stage, we are utilising a structure containing two parallel Autoencoders and a one-
dimensional CNN that is used sequentially after the SAEs. The autoencoders are used in order to 
transform normal (Autoencoder 1) and malicious (Autoencoder 2) traffic. Here, the idea is to use only 
the encoding parts of the Autoencoder. By using the encoding, the model attempts to compress the 
input information into a reduced dimensional space. Thanks to this, we obtain a compact version of 
the input. Then, the output of both autoencoders is concatenated and fed into 1d CNN module that is 
learning the class representation (using the compressed inputs) and, hence, the performance of this 
structure is significantly improved. Figure 2 shows the structure of the used model. 

 

Figure 2: Structure of the used DL model  

In our model, the input layer takes as input the single matrix of 60 features. Both SAEs use dense 
hidden layers, meaning that they are deeply connected with a connection between each neuron from 
the preceding layer to the current one. Between the dense layers, the dropout layers are included in 
order to prevent the overfitting of the model. Each autoencoder is trained separately, respectively 
using normal and malicious traffic. The output of each SAE is used as an input for one dimensional 
CNN, whose structure is shown in Figure 3. For the CNN, we use two convolutional layers (Conv1D in 
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the figure) followed by max pool layer (MaxPooling1D) and a dropout. Such a set is stacked three times 
and followed by a flattening layer (Flatten) and two dense connected layers (Dense). This last layer 
provides the predicted classification of the sample. In case of SAE, the mean squared error loss function 
is used. CNN part is using binary cross entropy.  

 

 

Figure 3: Structure of used one dimensional Convolutional Neural Network (1D CNN) 
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Figure 4: Confusion matrix with the results of classification – X axis shows predicted samples and Y axis signifies 
ground truth samples, where 0 signifies normal class, and 1 represents the malicious class 

 

Currently, the performed experiments give very good results for the classification of malicious traffic 
utilizing Ares, a Python based botnet as an example.  Table 2 shows the metrics of the trained model. 
The model was tested using a balanced set containing 13586 samples where half was normal traffic, 
and half contained infected bot traffic. Figure 4 summarizes the classification results obtained 
comparing the one predicted by the model and the ground truth. 

  

Metric Value for Normal Class (%) Value for Malicious Class (%) 

Precision 1 0.98 

Recall 0.98 1 

F1 0.99 0.99 

Metric Value 

Accuracy 0.99 

Table 2: Metrics obtained by the trained model 

3.1.4 Multi-domain/tenant DDoS detection and mitigation 

3.1.4.1 Problem and challenges 

The advent of 5G and its many advances over previous mobile technologies - much lower latency, huge 
bandwidth, the possibility to connect many more devices per square meter, and so on an– so forth - 
will not just bring benefits. It turns out that all these advances in mobile network performance will 
provide the perfect breeding ground for attacks. DoS attacks, in particular, will benefit the most from 
this: larger bandwidth will allow much more traffic to be sent per device, and the fact that many more 
devices can be concurrently connected to the network (proliferation of IoT devices) will allow much 
larger, and much more powerful botnets to be created in order to carry out these types of attacks 
much more effectively, especially empowering DDoS attacks. 
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The main challenge that arises from the previous aspects is an effective detection for traditional DDoS 
attacks (e.g., flooding attacks) and also for more advanced stealthy DDoS attacks (e.g., SlowDoS 
attacks). For this purpose, we aim to leverage AI techniques, particularly Deep Learning techniques, 
for an efficient detection and mitigation of such attacks in 5G environments. 

3.1.4.2 Problem and challenges 

Many research efforts have been devoted to tackle DDoS attacks leveraging ML and/or SDN. Braga et 
al. [44] proposed an intelligent method for detecting network-layer DDoS attacks in an SDN 
environment. The proposed method uses a Self-Organizing Maps (SOM) [45] model, an unsupervised 
artificial neural network, trained on traffic flow features. The contribution in [46] rely on DNN models 
to detect intrusion in an SDN network. The authors in [47] devised a ML-based collaborative DDoS 
mitigation strategy in a multi-SDN controller environment. The detection is performed Naive Bayes 
classifier based on flow features extracted by the SDN controller. Upon detection of malicious 
behaviour, the SDN controller in the attacker’s network is automatically notified to create a deny IP 
based flow. Similar to [40], the work in [42] , [43] consider only network-layer attacks. Moreover, the 
proposed models are trained on NSL-KDD, a relatively old dataset that cannot reflect the current trend 
in network attacks.   

Hong et al.[48] devised an SDN-assisted defence method to detect and mitigate slow HTTP DDoS 
attacks. The defence solution is deployed as a SDN application and triggered by the web server when 
the number of open connections that sent incomplete HTTP requests exceeds a given threshold. The 
major weakness of threshold-based schemes is their lack of accuracy. In fact, threshold-based schemes 
are unsuitable for detecting application-layer DDoS attacks due to the resemblance between the traffic 
patterns generated by those attacks and benign activities. The authors in [49] demonstrated the 
potential of ML techniques in detecting low-rate application-layer DDoS using the characteristics of 
malicious TCP flows. A detection accuracy of over 97% has been achieved using K-Nearest Neighbour, 
Decision Trees and DNN techniques. 

Some solutions related to the detection of DDoS attacks over 5G multi-tenant networks have been 
presented in recent years. For instance, Mamolar et. al [50] proposed an extension of the well-known 
Intrusion Detection System (IDS) Snort, capable of detecting DDoS attacks in real time, to support 5G 
multi-tenant traffic, so it can be deployed in a multi-tenant 5G environment. However, they do not 
leverage any AI technique, so we consider this approach too static and inappropriate for such dynamic 
network environments as those found in 5G. 

Furthermore, very few contributions have focused on addressing the issue in 5G network slicing 
environment leveraging mainly the resource isolation concept (e.g., [51]). However, the new shift 
towards cloud-native architecture where virtual network functions are deployed as containers makes 
the complete isolation hard to achieve.  

In addition, detecting DDoS attacks by only analysing the network traffic may not always be possible, 
especially with the emergence of stealthy application-layer DDoS attacks which aim at exhausting the 
server’s resources while generating a traffic that mimic the legitimate one. Thus, using new sources of 
information, such as resource usage and/or performance of service under attack, is vital to 
discriminate malicious behaviour due to DDoS attack. 

3.1.4.3 Solutions descriptions and advancements 

To fill the aforementioned gaps, we leverage the potential of DL to build three solutions for tackling 
the stealthy DDoS attacks in a 5G environment, considering two settings (i.e., network slicing and multi-
domain/multi-tenancy) and performing malicious behaviour detection either by using data collected 
from network layer (i.e., characteristics of network flows) or application layer (i.e., resource usage and 
service performance metrics). 
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Figure 5: DDoS detection and mitigation architecture 

The overall architecture of our enabled is shown in Figure 5. As can be noted, we consider a multi-
tenant 5G scenario with double encapsulated traffic using Virtual Extensible LAN (VXLAN) and GPRS 
Tunnelling Protocol v2 (GTPv2) protocols. We also consider Content Delivery Network (CDN) slices 
deployed at the edge cloud infrastructure, potentially across multiple domains. The slices provide 
video CDN functionality as a service (CDNaaS).  Each slice is composed of a set of VNF instances (e.g., 
streaming servers, caches, and transcoders) appropriately chained together to form a service instance. 
The isolation between network slices is supported using VXLAN over SDN. 

Although we present a unique enabler from the design perspective, two different 5G environment 
settings have been deployed. On one hand, AALTO/OULU’s implementation will be able to operate 
over a network slicing environment and, on the other hand, UMU’s implementation focuses on a multi-
tenant/multi-domain network environment. Furthermore, AALTO/OULU considers the detection of 
malicious behaviour caused by application-layer DDoS attacks by using either data collected from 
network layer or application layer. This results into three different implementations for the same asset. 

UMU’s implementation 

Regarding the UMU part, the overall implementation can be divided into three main modules/layers 
that communicate with each other using Apache Kafka. Below, each layer is briefly described by its 
capabilities: 

• Real-time monitoring agent: capable of dissecting multi-tenant 5G packets encapsulated with 
VXLAN and GTPv2 protocols. 

• Real-time conversations processor: groups packets into conversations/flows. On one hand, it 
generates a feature-based dataset composed of 57 features per conversation (offline). On the 
other hand, it feeds the ML processor with real-time conversations data (online). In order to 
generate the dataset, we leverage the Apache JMeter tool [52] for benign traffic simulation, 
and the slow-http-test tool [53]  for application layer DDoS attack traffic simulation. 

• Real-time ML processor: based on unsupervised learning techniques, particularly Gaussian 
Mixture Models (GMM) (clustering) and Autoencoders (deep learning), this layer is able to use 
the conversations information to effectively detect potential attacks with high detection 
accuracy (~98%). 
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This architecture can be consulted in detail in Figure 6. 

 

 

Figure 6: UMU's multi-tenant/multi-domain DDoS detection architecture 

In order to enable the communication between modules, each one generates a JavaScript Object 
Notation (JSON) message with a specific format that will be uploaded to the Kafka broker. Below, each 
one of these can be seen in Figure 7, Figure 8, and Figure 9: 
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Figure 7:  Monitoring module output (per packet) 
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Figure 8: Conversations processor module output (per conversation) 
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Figure 9: ML processor module output (per conversation) 

 

So as to achieve real-time communication, conversation processor and ML processor modules leverage 
Apache Spark Streaming library to receive and process all the incoming information continuously. 

With reference to the implementation status of this part, UMU made available a first version of the 
previously described implementation. As future advancements, we plan to deploy the system on our 
own 5G testbed, implement real-time mitigation techniques based on SDN, and build a collaborative 
network of nodes to train the involved ML models using FL techniques, improving the overall privacy 
level while allowing clients to access to further data that is available in other devices. 
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AALTO/OULU’s DDoS Detector Implementation 

In this scenario, we consider the detection of application-layer DDoS attack within one slice instance. 
The attack targets the video streamer deployed as an NGINX web server. Figure 10 depicts the basic 
architectural components of the proposed solution to mitigate the application-layer DDoS attacks in a 
fully autonomous way. the “App-Layer DDoS Protection” component is in charge of detecting the 
malicious activity and issuing the security policy in case the attack is detected. It consists of four main 
modules communicating through REST APIs: 

• Network Flow Collector which permanently collects network flows via port mirroring. To limit 
the impact of mirroring on the network performance, only traffic flowing from/to the 
monitored asset (e.g., Web server) is mirrored. 

• Features Extractor analyses the collected traffic to retrieve flow’s features relevant to 
application-layer DDoS attack detection. Once extracted, the flow features are passed to the 
Detector for uncovering suspicious behaviour. 

• Detector relies on an DL model to detect the anomalous behaviour. If a malicious traffic 
pattern is identified, the Detector issues a security policy (e.g., flow dropping or steering) to 
the Security Orchestrator. The security policy is expressed using Medium-level Security Policy 
Language (MSPL) (see D3.2). Details on the proposed DL model will be provided in Section 
3.1.4.3. 

• Security Orchestrator which, upon receiving the security policy, converts the policy into a flow 
command (with the help of the Security Policy Manager) and sends it to the SDN controller. 
Based on the received flow command, a flow rule is pushed by the SDN controller to the 
corresponding virtual Switch (vSwitch) to fulfil the defined security policy. 

 

 

Figure 10: The App-Layer DDoS Self-Protection Framework’s high- level architecture 

The attacker has the capability to launch application-layer DDoS attacks, particularly HTTP-based 
flooding attack that aims to overwhelm the server by a voluminous number of legitimate HTTP 
requests. We consider both high-rate and slow-rate mode for launching the HTTP-based flooding 
attack. In high-rate mode, the attacker mimics a flash-crowd event by flooding the web server with a 
large number of legitimate HTTP requests in a short period of time. The low-rate mode, however, 
consists in establishing multiple HTTP connections with the web server by sending partial HTTP 
requests at a very slow rate. 
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AALTO/OULU’s DDoS Mitigator Implementation 

Unlike the previous scenario, we assume now that the detection of the application-layer DDoS attack 
may not be possible using the characteristics collected from network flows. This could be possible by 
generating new stealthier patterns of the DDoS traffic that has not yet been seen by the ML model 
integrated in the DDoS Detector. As illustrated in Figure 11, we assume also that the CDNaaS platform 
supports the auto-scaling functionality as a mean to deal with the workload that could be caused by 
DDoS attack if this last can escape detection using the DDoS Detector. However, the auto-scaling 
capability is a double-edged sword when the DDoS attack is underway. In fact, the auto-scaling may 
result in resource starvation while the shared infrastructure resources (e.g., CPU, RAM, etc.) between 
slices can be exhausted by the slice under attack, resulting in potential availability and performance of 
services provided by the co-hosted slices. 

To address this problem, we propose a new solution that is able to discriminate legitimate auto-scaling 
requests due to flash events from malicious auto-scaling requests due to application-layer DDoS 
attacks. Figure 11 shows the basic architectural modules of the proposed solution. It consists of three 
main modules communicating through REST APIs: 

• Monitoring Framework, which is in charge of collecting resource usage and performance 
metrics from the slices via deployed probes. 

• Admission Controller Delegator, which is responsible for intercepting the auto-scaling request 
triggered by the auto-scaling module and delegate the scaling decision to the Damage 
Controller for validation. 

• Damage Controller, which runs a DDoS Mitigator model that uses DL to detect whether the 
scaling is due to legitimate workload or rather malicious workload caused by an application-
layer DDoS attack. If the workload is malicious, the scaling operation is refused. Details on the 
proposed DL model will be provided in the following part. 

 

 

Figure 11: The application-layer DDoS Mitigator architecture 

AI and ML contributions 

UMU’s DDoS Detection Model: With respect to the implementation proposed by UMU, our ML 
contributions can be found inside the proposed ML layer. In Figure 12, an overview of the proposed 
architecture regarding this module can be consulted. As can be noted, after an initial pre-processing 
of data, both presented techniques (GMM and autoencoder) are combined in order to classify 
conversations into attacks or normal behaviours. In a first stage, models are trained offline using the 
dataset previously generated by the conversations processor. Then, in a second stage, the system is 
able to operate in real-time (online) and to classify new conversations. The procedure to be followed 
when classifying a new instance is as follows: in first place, we evaluate the instance against the 
clustering algorithm (GMM). GMM-based clustering provides the probabilities of membership of each 
communication to the set of clusters, in such a way that those with a high value will be taken as normal 
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and those with a low value will be taken as abnormal. However, it is necessary to determine how those 
probabilities that take intermediate values (e.g., between 40% and 60%) are classified. For that reason, 
this clustering method requires the help of other DL techniques (in our case, an autoencoder) that 
allow us to break with the uncertainty of these ambiguous probabilities. Then, in those cases, we will 
use the autoencoder to provide the final decision for the conversation. On the other side, for 
evaluation purposes, we divide the original dataset into training and testing sets with a proportion of 
80/20 (training/testing in %), replace infinite and invalid values with the median of the corresponding 
column, and normalize all values in order to bring them in the range [0 ... 1] (feature scaling). 

 

Figure 12:  UMU’s ML processor for DDoS detection 

AALTO/OULU’s DDoS Detector Model: To identify the application-layer DDoS attacks, DL is leveraged 
to build the detection model. The adoption of a DL model is motivated by its capacity of uncovering 
complex non-linear relationships between inputs and outputs, yielding higher accuracy in 
distinguishing application-layer DDoS flow patterns from legitimate flow patterns. Specifically, the 
detection model is built using an MLP algorithm. The proposed model consists of 1 input layer, 2 hidden 
layers with 64 neurons each, and a two-class softmax output layer. The model’s input is the flow 
features received from the Extractor. The model’s output is the traffic class; that is, DDoS traffic or 
legitimate traffic.  

The MLP-based model integrated in the Detector module is trained on the recent intrusion detection 
dataset, CICIDS2017 [54] (where only network flows corresponding to legitimate traffic and DoS/DDoS 
attacks are used) augmented by normal and application-layer DDoS flows generated in our testbed 
[55]. The high-rate HTTP-based flooding attack is generated using Hulk tool while the low-rate HTTP-
based flooding attack is launched using Slowloris tool. The DDoS attack against the video streamer has 
been performed using 8 LXD containers. Apache JMeter is used to simulate a legitimate client sending 
an HTTP request every one second. Each network flow in the dataset is defined by a feature vector 
containing 79 features in addition to a label identifying the flow’s class (i.e., benign or malicious). The 
created dataset is available on [56]. 70% of the dataset’s flows are used to train the model and the 
remaining 30% flows are used as a test set to assess the model’s performance on unseen data. The 
model is trained for 10 epochs with a batch size of 128, Adam as an optimizer, and a learning rate of 
0.001. The model is implemented using the Python’s DL library Keras running on a TensorFlow backend. 
It achieved an accuracy of 99.65% on the test set. 

AALTO/OULU’s DDoS Mitigator Model: The DDoS Mitigator model is built as an anomaly detection 
model using the unsupervised learning technique LSTM Autoencoder on multivariate time series. The 
main motivation behind adopting a deep learning technique (i.e., LSTM Autoencoder) to solve the 
DDoS problem is its proven performance in capturing complex interactions between features of a 
large-amount of multi-dimensional data compared to traditional statistical-based methods (e.g., 
autoregressive models and exponential smoothing) [57]. Using multivariate time series allows to 
observe the correlation between different metrics, resulting in improved anomaly detection accuracy. 
Moreover, the use of unsupervised learning eliminates the need of labelled datasets which are usually 
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difficult to obtain in real-world setup. Figure 13 illustrates the model structure. 

 

 

Figure 13: LSTM Autoencoder Structure 

The inputs to the model are the features related to resource usage (e.g., CPU usage, system load, 
memory usage, I/O network traffic) and system performance (e.g., http response time). 

To train the model, we generated a first dataset using two CDN slices created in our CDNaaS platform 
[58]. Figure 14 illustrates the testbed configuration. The VNFs of each slice are deployed as LXD 
containers on two Virtual Machines (VMs). 3 VMs are used to deploy the VNFs of the two slices where 
one VM is shared between them. Each VNF and VM has specific configuration in terms of CPU, RAM 
and Disk. A remote attacker performs application-layer DDoS attack against slice 1 by targeting the 
video streamer. The attacker launches the attack using Hulk and Slowloris tools at specific time periods. 
The resource usage and system performance at the VM level and VNF level for both slices are 
monitored using Prometheus [58]. 

 

Figure 14: Testbed configuration for dataset generation 

A dataset generator (see Figure 15) is developed using Python to extract the resource usage and system 
performance metrics as csv files. The generator extracts the features related to resource usage and 
system performance for all VMs and VNFs involved in slice 1 and slice 2 for a specified period defined 
by a “start date” and an “end date”. The “start date”, “end date”, “time step”, and the list of nodes 
(i.e., VMs, VNFs) from which the features should be extracted are provided to the generator in a json 



D3.3: 5G security new breed of enablers 

Copyright © 2019 - 2022 INSPIRE-5Gplus Consortium Parties  Page 40 of 86 

file (param.json). The features to extract are formulated using PromQL queries submitted to 
Prometheus. The generator generates a csv file per node (i.e., VNF, VM), containing the time series of 
the extracted features of this node. 

 

 

Figure 15:  Dataset Generator 

The model is trained on the time series for normal behaviour. The dataset contains 2761 samples, split 
into 2361 samples for training and 401 samples for test. The training is performed using 30 epochs and 
a batch size of 50. A validation ratio of 20% is used. Mean Absolute Error (MAE) is used as loss function 
and Rectified Linear Unit (ReLU) as activation function. To avoid overfitting, L2 regularization is used. 
To detect the anomalous workload, a static threshold is defined as 99% of the loss distribution. A 
separate model is built for each VNF and VM. Figure 16 illustrates the anomalies detected (red dots) 
for the video streamer under attack. As depicted in Figure 16, the preliminary results show the 
effectiveness of the DL-based DDoS Mitigator in detecting anomalies related to the launched Hulk and 
Slowloris attacks. However, we notice also that false positives are also generated. 

 

 

Figure 16: Anomaly Detection using DDoS Mitigator 

It is worth mentioning that the implementation of the DDoS Mitigator model is still in progress. To 
improve its performance, we are undertaking different improvements, including: 

• Creation of a new testbed based on a Kubernetes environment to deploy the CDN slices. The 
use of Kubernetes is motivated by its native support of the auto-scaling capability. More details 
on the new testbed can be found in deliverable D5.2. 

• For effective detection of anomalous workload while reducing the false positives, we are 
increasing the size of the dataset used to train the DDoS Mitigator model. The new dataset set 
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will be generated using the Kubernetes testbed. 

• We are developing a new DDoS Mitigator model that relies on metrics forecasting to detect 
the anomalous workload. To this end, we are leveraging GRU on multivariate time series. The 
motivation behind adopting GRUs is that GRUs are faster than LSTMs (due to their less complex 
structure) and can perform better than LSTMs on less training data. 

 

3.1.5 Anti-GPS spoofing 

3.1.5.1 Problem and challenges 

Network slicing and management rely on the characteristics of user equipment (UE) mobility pattern 
and UE density. Such systems need the UE to report its location information to allocate the 
communication resources to a certain area. Nowadays, the Global Navigation Satellite System (GNSS), 
specifically GPS, is the primary location technology used by UE due to its global coverage and accuracy. 

However, the unencrypted civil GPS signals are inherently vulnerable to spoofing attacks. Indeed, an 
attacker can use low-cost Software Defined Radio (SDR) tools, such as Universal Software Radio 
Peripheral (USRP), to generate fake GPS signals to fool the GPS receiver into calculating false positions. 
In another attack scenario, an adversary may deliberately report false GPS data to platform, which can 
lead to collision risks. Thus, without an accurate verification of the position claimed by a UE in an 
adversarial setting, the network may be deceived into allocating more resources to a mirage use case. 

3.1.5.2 State of the art analysis 

Several methods currently exist for the measurement of anti-GPS spoofing that are mainly focusing on 
GPS navigation signals analysis [59], GPS navigation message authentication [60], Inertial Navigation 
System (INS) based spoofing detection [61], and Mobile Positioning System (MPS) based spoofing 
detection [62][63]. The GPS navigation signals analysis detects the spoofed signal by estimating and 
comparing the Direction of Arrival (DoA) of the GPS signal, which requires multi-antennas for 
estimating the DoA of GPS signal or needs a secure GPS receiver to perform the cross-correlation and 
incurs more computational load on the GPS receiver. Compared with GPS signal analysis, GPS 
navigation message authentication does not need more antennas or additional receivers. The GPS 
Navigation Message Authentication (NMA) approach protects the civil GPS signal from attacking by 
embedding the cryptographic signature into the navigation messages. Nonetheless, even though NMA 
techniques are considered a practical and effective defence against GPS spoofing attacks, those 
techniques induce significant computational cost and latency due to signature verification. INS 
techniques detect GPS spoofing by using the position information estimated from the Inertial 
Measurement Unit (IMU) that consists of various on-board sensors including accelerometers, 
gyroscopes, magnetometers, and camera views, to cross-validate the veracity of the reported GPS 
position. Notwithstanding, the error accumulation of the IMU measurements is the main issue for INS, 
which can reduce the detection accuracy. Recently, MPS based spoofing detection has emerged as a 
new class of anti-GPS spoofing approaches that leverage the localization ability of mobile cellular 
networks to relocate the UE and discriminate the spoofed GPS positions in the base stations’ coverage 
area. The MPS-based spoofing detection methods use the triangulation location technique, which 
requires at least three base stations at the same time for a desirable spoofing detection accuracy and 
is also sensitive to the environmental changes. 

Note that the GPS spoofing detection methods discussed above either depend on expensive hardware 
or can be negatively affected by environment changes. Therefore, these detection methods are 
difficult to be used in resource constrained UEs. 
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3.1.5.3 Solutions descriptions and advancements 

To date, there have been very few empirically published accounts of an effective GPS spoofing 
detection approach that accommodates resource, cost, and environmental constraints. For this 
purpose, we propose a new solution to devise an effective cellular-enabled UE GPS spoofing detection 
system, where MLP is used to analyse the statistical features of path losses between UE and Base 
Stations (BSs). 

The proposed approach consists of three processes, namely data sampling, statistical analysis, and 
MLP prediction. 

• Data sampling: There are two kinds of data that need to be collected in the processing, namely 
the actual path losses data and the theoretical path losses data. The actual path losses data 
are the observations of base stations, and the corresponding theoretical path losses data are 
computed according to both UE’ GPS positions and BSs’ GPS positions. One of the theoretical 
path loss models between BS and UE is defined in 3GPP document in [64]. The theoretical path 
loss model in [64] is adopted in our solution. 

• Statistical analysis: A statistical analysis is then performed using moments (e.g., Mean 
Variance Skewness Kurtosis (MVSK)), quartile (e.g., BOX), and probability distributions 
difference (e.g., Wasserstein Distance (WD)) methods to extract the statistical characteristics 
of actual and theoretical path losses data. To obtain the metrics of path loss, we consider the 
number of data transmissions is O in a time duration t. The corresponding actual path loss set 
𝐿𝑖𝑣(𝑡) is expressed as: 

{𝐿𝑖𝑣
1 (𝑡), … , 𝐿𝑖𝑣

𝑜 (𝑡), … , 𝐿𝑖𝑣
𝑂 (𝑡)} 

where 𝐿𝑖𝑣
𝑜 (𝑡) donates the 𝑜𝑡ℎ path loss in t between BS 𝑖 and UE 𝑣. Similarly, the theoretical 

path loss set is defined as: 

{�̅�𝑖𝑣
1 (𝑡),… , �̅�𝑖𝑣

𝑜 (𝑡), … , �̅�𝑖𝑣
𝑂 (𝑡)}  

where �̅�𝑖𝑣
𝑜 (𝑡) denotes the 𝑜𝑡ℎ path loss in t. According to the MVSK method, we have 

𝐿𝑖𝑣
𝑀 (𝑡) = 

1

𝑂
∑ 𝐿𝑖𝑣

𝑜 (𝑡)𝑂
𝑜=1 , 

𝐿𝑖𝑣
𝑉 (𝑡) = 

1

𝑂
∑ (𝐿𝑖𝑣

𝑜 (𝑡) − 𝐿𝑖𝑣
𝑀 (𝑡))2𝑂

𝑜=1 , 

𝐿𝑖𝑣
𝑆 (𝑡) = 

1

𝑂
∑ (

𝐿𝑖𝑣
𝑜 (𝑡)− 𝐿𝑖𝑣

𝑀(𝑡)

√𝐿𝑖𝑣
𝑉 (𝑡)

)

3

𝑂
𝑜=1 , 

𝐿𝑖𝑣
𝐾 (𝑡) = 

1

𝑂
∑ (

𝐿𝑖𝑣
𝑜 (𝑡)− 𝐿𝑖𝑣

𝑀(𝑡)

√𝐿𝑖𝑣
𝑉 (𝑡)

)

4

𝑂
𝑜=1 , 

where 𝐿𝑖𝑣
𝑀 (𝑡), 𝐿𝑖𝑣

𝑉 (𝑡), 𝐿𝑖𝑣
𝑆 (𝑡) and 𝐿𝑖𝑣

𝐾 (𝑡) represent, respectively, the mean, variance, skewness, 
and kurtosis values of actual path losses in time interval t. Similarly, we can obtain the 

theoretical ones �̅�𝑖𝑣
𝑀 (𝑡), �̅�𝑖𝑣

𝑉 (𝑡), �̅�𝑖𝑣
𝑆 (𝑡) and �̅�𝑖𝑣

𝐾 (𝑡).  The details on BOX and WD metrics can be 
found at [65].  

• MLP prediction: The statistical properties are used as inputs to the devised MLP models (See 

Figure 17). The input ∆𝐿𝑖𝑣
𝑥𝑚 denotes the 𝑚𝑡ℎ difference of path losses reported by BS 𝑖 under 

each of the statistical methods (i.e., MVSK, BOX, WD). 𝑚𝑥 ∈ {𝑀, 𝑉, 𝑆, 𝐾} for MVSK-based MLP 
(MVSK-MLP) model, 𝑚𝑥 ∈ {𝑄0, 𝑄1, 𝑄2, 𝑄3, 𝑄4} for BOX-based MLP (BOX-MLP) model 
and 𝑚𝑥 =  𝑊 for WD-based MLP (WD-MLP’ model. The models' output, Prediction(t), is the 
final prediction decision, i.e., the reported GPS position is spoofed or not. 
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Figure 17: The structure of the MLP 

The proposed anti-GPS spoofing approach can be deployed on the edge server without any additional 
hardware or computation load at the UE. In addition, its effectiveness is less prone to changes in 
environmental conditions, thanks to the stability introduced by the statistical features. By using the 
path losses that can be obtained from the BSs broadly and speedily, and by taking advantage of the 
capability of ML to deliver faster decisions, the proposed approach will empower live detection of 
spoofed GPS positions. 

AI and ML contributions 

It is well known that the performance of MLP is sensitive to hyperparameter settings [66]. Thus, to find 
the best configuration of the different MLP models of our study, we carry out hyperparameter tuning 
by varying the learning rate (LR), the number of hidden layers, and the number of neurons per hidden 
layer. LR is drawn from {0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}, the number of hidden layers is 
varied from one to six layers, and the number of neurons of each hidden layer is taken 
from {8, 16, 32, 64, 96, 128}. The hidden layers have the same number of neurons and use ReLU as 
activation function. The best model parameters for this task are shown in Table 3. 

Scenario Setting 
MLP Algorithm 

MVSK BOX WD 

Three 
BSs 

LR 0.005 0.001 0.0005 

Inputs (12, 0) (15, 0) (3, 0) 

Hidden Layers 4 5 3 

Neurons 96 96 16 

Two BSs 

LR 0.001 0.001 0.001 

Inputs (8, 0) (10, 0) (2, 0) 

Hidden Layers 2 5 2 

Neurons 32 96 64 

One BS 

LR 0.0001 0.001 0.0001 

Inputs (4, 0) (5, 0) (1, 0) 

Hidden Layers 2 5 2 

Neurons 96 96 64 

Table 3: MLP hyper-parameters  

From Table 3, it is noticed that different configurations are required for MLP models to reach their best 
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performance under each of the three considered scenarios. The following key observations can be 
made: (i) the number of inputs to each MLP algorithm depends on the number of BSs involved in each 
scenario and the statistical method considered; (ii) the BOX-MLP algorithm needs more hidden layers 
and neurons compared to MVSK-MLP and WD-MLP algorithms. This can be explained by the fact that 
the number of hidden layers and neurons usually depends on the size of the input vector. In our case, 
BOX-MLP has the largest number of inputs; (iii) The WD-MLP algorithm uses at most three hidden 
layers and 64 neurons per hidden layer to achieve the best performance; (iv) Unlike MVSK-MLP and 
WD-MLP algorithms, WD-MLP algorithm requires the same MLP structure and LR to get the best 
performance for the three scenarios.  

The models’ efficiency in detecting GPS spoofing attack will depend greatly on the statistical metrics 
captured by the statistical methods. In fact, MVSK-MLP model requires a large amount of path loss 
data to ensure the accuracy of prediction. By removing outliers, the BOX-MLP model could mitigate 
the environment impacts on the path losses. Meanwhile, it will also lead to increased error in GPS 
spoofing detection since the outliers caused by attackers are also removed. The WD-MLP is used to 
describe the difference between actual and theoretical path losses, and thus generates only one 
feature value on the difference for each base station, which could result in unfitting problem. 

In [65], we demonstrated the effectiveness of the proposed MLP-based anti-GPS spoofing approach in 
delivering accurate decisions about the authenticity of Unmanned Aerial Vehicle’s (UAV) GPS positions. 
Thanks to the stability introduced by the statistical metrics, the prediction accuracy is greatly 
enhanced. Indeed, the developed MLP approach could achieve an accuracy rate that is above 93% with 
three base stations and can reach 80% with only one base station. 

 

3.2 Data support for cognitive security techniques 

3.2.1 Security data generation and collection 

3.2.1.1 Problem and challenges 

B5G network opens new opportunities to operators to apply ML to solve multiple problems, including 
advanced security management. To achieve these results, it is needed to invest a non-negligible 
quantity of effort in the data engineering process, including data sources identification, data 
transformation, and to evaluate conditions such as frequency and quality of the data. Network range-
digital twin (NDT) appears as a potential solution for assessing solutions related to AI/ML architectures. 
This includes generation, collection, and transformation of data to design and test different ML models 
in an emulated environment before deploying in production, reducing the cost and investment. This 
model could fit for offline ML training, and ML inference engine delivery. Figure 18 shows the holistic 
process combining several enablers. 
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Figure 18: Data to ML cycle 

 

Mouseworld acts as the 5G twin environment for network traffic generation and delivery. This network 
flows related information is collected and aggregated through a data collector. The output generated 
is delivered to design an ML model. The outcome is integrated into the Smart Traffic Analyzer and 
validated in the Mouseworld. If the model does not achieve the expectations or the traffic scenarios 
evolves, a redesign can be done. 

3.2.1.2 State of the art analysis 

ITU introduced the concept of ML sandbox in their Framework for ML in 5G (ITU-T Y.3172) for providing 
the capacity to simulate data pipelines to train ML models. Recently a clear effort is rising to clarify the 
concepts around the applicability of Digital Twin for networks. IETF has started this process [67], and 
one of the straightforward applications is the ML/AI. 

3.2.1.3 Solutions descriptions and advancements 

AI and ML contributions 

Mouseworld 

This lab has been conceived as a network Digital Twin infrastructure created to produce datasets 
related to network threats and train ML models. Complex network emulation and testing can be 
carried out thanks to the equipment and tools. One of the main characteristics of the lab is the ability 
to create/destroy several network scenarios to run different tests. The virtual scenarios are isolated 
from each other thanks to the NFV/SDN architecture, and therefore the traffic can be captured using 
VNF probes. This consistent environment allows evaluating different mitigation tools or versions under 
the same circumstances, making it perfect for developing and tuning machine learning network 
instruments. 
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Figure 19: Mouseworld Lab components 

The Mouseworld Lab mainly consists of a topology generator that creates the required virtual network 
elements and the interconnection between them, a Management and Orchestration (MANO) stack 
based on OSM and a Virtualized Infrastructure Manager (VIM) with OpenStack. Different VNFs can be 
deployed in each scenario, including a scheduler to coordinate the experiment execution, virtual 
instances of commercial traffic generator, and a probe that captures the traffic to be labelled and 
transformed to be used by data scientists. The lab components are shown in Figure 19. 

The current activity is focused on adapting the environment to support 5G Core and access traffic 
emulation in specific scenarios to generate datasets. A basic scenario to generate cryptomining 
encrypted traffic (HTTPS) is combined with some HTTPS applications. The tools to generate the attacks 
and the dataset captured and used to train a binary classification model to detect cryptomining will be 
used in testbed as part of TC1/demo1 as a result. 

Smart Traffic Analyzer (STA) 

The Smart Traffic Analyzer solution introduced in D3.1 is shown in Figure 20. It can be considered as a 
network probe that monitors the network traffic and generates predictions based on specific ML 
models preloaded into their system. The final goal is to make the solution customized to specific 
problems just changing the ML model. 
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Figure 20: STA internal architecture 

The current version architecture has evolved to a microservice architecture running separately in 
different docker containers. With the help of a docker network, the traffic is duplicated so that both 
services can receive and process it. Also, through an API described below, both services can send the 
processed information to another local docker running an ELK server or to external data analytics 
engines specified by configuration. 

• Softflow Service: This service identifies the different flows from the traffic received through 
the interface connected to the mirrored network. This service stores the information of 
different flows, depending on their source and destination addresses, the transport protocol 
used, and the ports used by the traffic. Finalized or expired flows are delivered in NetFlow 
format to the internal flow collector, parsed and sent to the ELK. 

• STA Service: The core of the STA is in charge of identifying and classifying the different types 
of traffic received through the mirror network by using an ML model. In this case, the service 
will be running a modification of tstat software [68] that extracts specific network traffic 
features based on the traffic flows statistics. Then using a python module, with a customized 
ML model trained to identify some types of traffic based on previous tstat features, it will 
assign a tag to each captured flow depending on the confidence level. Once the module has 
set a tag, the information about the flow will be sent to the ELK. 

One of the STA service capabilities is the possibility to use different ML models depending on the traffic 
that is going to be analysed. This gives the ability to set new configurations based on the traffic to be 
classified. New models should be trained (see Mouseworld) before using them. Later, when a new ML 
model is changed, only it is necessary to add the new tstat features used in the training process and 
the possible tags to assign. This process will be done by configuration.  

The model trained over the Mouseworld and integrated in STA uses a cryptomining binary 
classification, based on Random Forest to detect this malicious pattern inside a 5G SBA (Service Based 
Architecture) environment where everything is encrypted with TLS. The STA enabler uses only Layer 4 
statistical metrics, avoiding payload inspection or decryption. 
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3.3 Robust AI/ML techniques for network security 

3.3.1 Robust federated learning 

3.3.1.1 Problem and challenges 

The standard setting in ML considers centralized datasets which are tightly integrated into the system. 
However, in most real-world scenarios, data is usually distributed among multiple entities. More 
specifically, centralized data collection is challenging due to the higher communication cost for sending 
data, when the devices create large volumes of data, serious privacy issues coming with the sharing of 
sensitive data, overfitting issues with the small datasets and the biased local datasets.  As a solution, 
federated training is proposed where each user and server collaborate to train a unified neural network 
model. This ML approach was formally published by Google in 2016 as Federated Learning (FL).  Simply, 
FL is a distributed learning concept, where end devices or workers are participating for learning 
process. The central entity or parameter server shares the training model and aggregates the local 
model updates coming from workers. Workers train the shared model locally using their own data and 
send the trained model back to the central server.  Central server aggregates the received models and 
shares the aggregated model with workers. The final model needs to be as good as the centralized 
solution (ideally), or at least better than what each party can learn on its own. Typically, FL brings the 
advantages in terms of improving privacy awareness, low communication overhead, and low latency. 
Most importantly, FL is suitable to address the distributed networking scenarios in the more complex 
networks.  

However, FL is vulnerable to poisoning attacks by design (Figure 21). The central server can be 
poisoned using minimum of one adversarial worker. This will affect the learning process of the entire 
network. The problem is that the central server cannot guarantee that the workers provide accurate 
local models and have no control over the level of security at each worker. Another issue is that it is 
possible to encounter a single point of failure at the central server. Therefore, it is necessary to 
implement defence mechanisms at the central server to distinguish between poisonous and honest 
users. It is challenging since the central server has no validation data for verification of the model 
updates received by the workers. 

 

 

Figure 21: System model of poisoning attacks for Federated Learning 

3.3.1.2 State of the art analysis 

In the current state-of-the-art, some works are done to improve security in FL and to use FL as an 
enabler to improve security in the networks [69]. Mainly two types of attacks are identified in FL, 
namely data poisoning and model poisoning. In data poisoning attacks, the attackers modify the 
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training data in the workers by making workers’ training incorrect and generating poisoned model 
updates. In model poisoning attacks, the attackers create poisoned model updates by manipulating 
benign model updates or according to pre-designed rules. The defence types are falling under three 
types [70]. 

1) Robust aggregation: The server aggregates model updates according to a special rule, 
instead of simply taking the average.  

2) Anomaly detection: The server detects and then removes or devalues the poisoned model 
updates.  

3) Hyper defence: A combination of robust aggregation and anomaly detection.   

Currently used algorithms at the centralized server are focusing on distinguishing poisonous updates 
from the distributed workers. Some algorithms such as Krum [71], Bulyan [72], trimmed mean and 
median [73] are proposed for this purpose. All four algorithms are designed to detect adversaries when 
they try to deviate the learning process from a common goal. They discard the highly dissimilar model 
updates.  Krum, Bulyan and trimmed mean algorithms require the estimation of the expected number 
of adversaries in the system as an input parameter. This is a major limitation of their practical 
application. The median algorithm can be easily compromised by increasing the number of attackers. 
The newly proposed algorithm called FoolsGold has reasonable improved performance than the above 
ones since it does not need the prior knowledge of adversaries (e.g., expected number of adversaries 
or validation dataset at the server).  

3.3.1.3 Solutions descriptions and advancements 

AI and ML contributions 

The targeted poisoning attack on FL system is described as follows. Adversary controls C poisonous 
nodes where the system has total number of n nodes. We exploit the weaknesses of the existing 
FoolsGold design and perform a targeted model poisoning attack to circumvent its defence.  For the 
experiments, we use a single layer fully-connected softmax for classification with MNIST digit classifier 
dataset [74]. FoolsGold algorithm (Figure 22) primarily depends on the Cosine Similarity (CS) of the 
received gradient updates. We intelligently introduce random noise to the gradient updates at 
poisonous nodes. The poisonous nodes train their local models with label flipped data and then add 
the noise before sending them to the central server. A noise vector specifically replaces a part of a 
given poisonous gradient update to add extra dissimilarity. Only the gradient updates corresponding 
to the less important features of the model is placed with noise while the vital features required for 
model training will not be propagated with noise. This ensures that the noise does not reduce the 
effectiveness of the attack. We use a subset of data at the devices using Stochastic Gradient Descent 
(SGD) method which reduces the training times. This is done to avoid the inconsistencies among 
training times due to the different amounts of data. 
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Figure 22: Algorithm for attack creation on the FoolsGold algorithm 

We generate two orthogonal noise vectors N1 and N2 that comprise of x features.  We also take the 
negatives of those vectors, −N1 and −N2.  The cosine similarity among these four vectors are CS(N1, N2)  
=  0, CS(−N1,−N2)  =  0, CS(N1,−N1)  =−1 and CS(N2,−N2)  =−1.  We then multiply each of these four vectors 
by “noise intensity” parameter.  The scalar multiplication does not affect the cosine similarity values. 
We then replace some of the gradient values of the four poisonous nodes of a given group by these 
four vectors. The value for the noise intensity should be chosen in a way that, the noise values are 
significantly higher than the gradient values. Then the noise values have a greater effect on the cosine 
similarity, even though the full gradient vectors are not orthogonal or negative to each other.  The 
domination of noise due to a higher noise intensity keeps the cosine similarity at a lower value. This 
way, the four users of a given group has a minimum cosine similarity.  We repeat the same procedure 
for the poisonous nodes in other poisonous groups. Algorithm in Figure 22 depicts the procedure for 
intelligent noise addition. 
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4 The security of AI/ML and protection techniques 

As AI/ML techniques become critical in closed-loop and autonomous operation for network security, 
security of AI/ML also become crucial. This issue is augmented with a software security concern as the 
network assets including cognitive security functions themselves are becoming increasingly a system 
of software systems in communication networks. This evolution is to be exacerbated with the 
emergence of Beyond 5G or 6G networks. Therefore, we extend our security analysis towards AI/ML 
security and present our work in this section. 

4.1 Protection against adversarial attacks 

The key role that AI plays and will play in enabling fully autonomous security management capabilities 
is indisputable. However, its major role makes it an attractive target for attackers [66]. Indeed, AI 
systems, specifically ML systems, can be fooled to learn wrong models, make incorrect decisions, or 
leak confidential information [75]. In the INSPIRE-5Gplus project, we conducted a comprehensive 
investigation of the security risks stemming from the exploitation of AI vulnerabilities by adversaries. 
We also recommended several defence measures while advocating on which components of the ITU-
T’s ML5G (Machine Learning for Future Networks including 5G) unified architecture they could be 
enforced. More details on the main outcomes of the conducted study can be found in INSPIRE-5Gplus’s 
D2.2 and [76]. 

Driven by the key role of DL in implementing some of INSPIRE-5Gplus’s security enablers, as presented 
in the previous sections, we conducted a practical study demonstrating the vulnerability of DL models 
to adversarial attacks as well as the effectiveness of adversarial learning defence in building DL models 
that are robust to adversarial attacks [75]. To this end, we considered the MLP-based DDoS Detector 
Model introduced in Section 3.1.4. 

The adversarial attacker is assumed to have a full-knowledge (i.e., white-box attack) on the targeted 
model to generate adversarial flows that will be misclassified by the model (i.e., (D)DoS flow classified 
as normal flow or vice versa). Three attacks are considered: 

• Fast Gradient Sign Method (FGSM) [77], which generates adversarial examples by performing 
a one-step gradient update in the direction of the gradient’s sign of the loss function relative 
to the input. The input is then altered by adding a perturbation that can be expressed as: 
 

𝜂 = 𝜖. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦)) 
where x is a sample (i. e. , network flow), y is the label of x, 𝐽(𝜃, 𝑥, 𝑦) 

 is the loss function used to generate the adversarial example and 𝜖 is the perturbation 
magnitude. Thus, the adversarial sample is generated as 

 
𝑥∗ = 𝑥 + 𝜂 

 

• Basic Iterative Method (BIM) [78], which extends FGSM by applying it iteratively with small 
step size and clipping the values of the adversarial example after each step such that they are 
within an 𝜖-neighborhood of the original sample. This gives the following recursive formula: 
 

𝑥0
∗ = 𝑥,                                                                            

𝑥𝑖
∗ = 𝑐𝑙𝑖𝑝𝑥,𝜖 (𝑥𝑖−1

∗ + 𝜖 𝑠𝑖𝑔𝑛 (∇𝑥𝑖−1
∗ 𝐽(𝜃, 𝑥𝑖−1

∗ , 𝑦)))
 

 

• Jacobian-based Saliency Map Attack (JSMA) [79], which creates an adversarial example by 
perturbing the minimal number of features of the original sample based on Saliency map, 
which is defined as 
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for a feature  
i of an input sample X and a neural network F. In fact, the adversary aims to misclassify a sample X 
such that it is assigned a target class 𝑡 ≠ 𝑙𝑎𝑏𝑒𝑙(𝑋). To this end, the probability of target class 𝐹𝑡(𝑋) 
must be increased while the probabilities 𝐹𝑗(𝑋) of all other classes 𝑗 ≠ 𝑡 decrease, until 𝑡 =

arg𝑚𝑎𝑥𝑗 𝐹𝑗(𝑋). 

The attacks are implemented using the Cleverhans library [80] to craft adversarial examples from the 
test set. The adversarial training is performed based on adversarial examples generated using FGSM 
and BIM attacks. For the three attacks, we observed a significant drop in the original model’s accuracy. 
It is worth mentioning that the advantage of JSMA over FGSM and BIM lies in reducing the number of 
perturbed features, making the generation of adversarial network flows more feasible. The results 
show also that the model’s robustness is considerably improved when the model is trained with 
adversarial examples generated by the same attack. More details on the study can be found in [70]. 

As a PoC, we improved the application-layer DDoS self-protection framework presented in Section 
3.1.4 by replacing the original DDoS Detector model with a robust DDoS Detector model. In addition 
to a normal attacker, we defined a smart attacker as an attacker who has the capability to launch an 
application-layer DDoS attack while evading detection by a ML-based detector. A smart attacker is 
supposed to be able to craft application-layer (D)DoS flow that will be misclassified as a legitimate flow 
by the ML-based model. It has the capability to carry out white-box FGSM attacks against the DDoS 
Detector model. To make the DDoS Detector model resilient to adversarial attacks, the model has been 
adversarially trained on adversarial flows generated by the same attack (i.e., FGSM). Through this PoC, 
we could demonstrate that while the original DDoS Detector model fails in detecting the adversarially-
generated application-layer DDoS attacks, the use of its adversarially-trained variant allowed to 
prevent both ordinary and adversarially-generated attacks. More details on the performance results 
of the robust DDoS Detector model can be found in [55]. 

4.2 Elevating trust on AI by software security 

To define how and where software security is useful for elevating AI/ML security, a good start is a 
focused technical survey categorizing and detailing the modes of attack and the classical existing 
mitigations. Before that, however, it is appropriate to state the discrepancies between a general-
purpose data processing algorithm and AI/ML ones, in the perspective of their security. Our survey is 
produced at two perimeters successively. First, we consider any type of AI/ML application. Secondly, 
we look more precisely at the AI/ML systems implemented in 5G networks. This scope restriction is 
aimed at establishing what the most salient threats in AI/ML in operation in 5G networks are. We can 
better elaborate the attack areas laid over the data extraction and processing pipeline as well as assess 
if software security can bring any valuable contribution there. When this work is completed, we 
produce a specific technical survey on the merits of trusted execution environment to frustrate the 
model stealing. We then conclude by providing the results and lessons learnt from our technical 
investigation of Intel SGX (Software Guard Extensions) used as a shield for the model as well as other 
techniques applied on the data collection and inspired from this research work.   

4.2.1 Specificities of AI/ML solutions (in view of their software security) 

AI/ML systems are not developed and conceived by the application developer as (any) other data 
processing software is. The divergence relies on the core code (learning algorithm) genesis, not 
developed by the application developers but conversely by machine learning framework teams. 
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Algorithm and framework are common bricks used for several very different applications by the AI/ML 
(vertical) solution designers. Some depicts this situation as “AI is automatic programming” which is a 
factual statement as no one needs to program it. A common pre-existing software is customized and 
tuned automatically at the training stage resulting in the production of the model parameters. The 
added value or intellectual property of the AI/ML vertical application designer is in the appropriate 
selection of the (pre-existing) algorithm and its training with the well- or best-fitted training data. A 
stock phrase is that AI/ML quality depends on its training data. As a consequence, with AI/ML, the 
intellectual property resides precisely on the model’s parameters which consists in a data structure, 
not an algorithm. This entails one critical Intellectual Property Rights (IPR) issue.  

The higher importance of data versus software for correct functioning of AI/ML and on the intellectual 
property value only fades partially the relevance of software security. In the context of an open-source 
AI/ML algorithm code, software confidentiality is still surprisingly important as a properly targeted 
attack on an AI/ML solution is far easier to spawn with the accurate knowledge of algorithm. In 
practice, there are many of these algorithms. Keeping the algorithm confidential is not aimed at 
securing the intellectual property but to conceal and hide it, thus creating opacity on its actual type to 
the attacker, drifting the attack from a defined strategy based on certain assumptions into guesses. On 
the other side, considering the model parameter security, it is at least equally important to elaborate 
how these data can be protected leveraging software security in appropriate schemes. In practice, 
securing the software which itself secures and validates the data is a valuable security boost.  

When software security is discussed, a common statement is that open-source code is allegedly safer 
as being (security-wise) improved by a massive class of users. The rationale at stake is a lower 
prevalence of pending vulnerabilities to exploit than in proprietary code of lesser use. This argument 
is a dual sword argument as hackers will first target highly employed software to carve their attack and 
especially if the code can be accessed for static analysis, as is AI/ML open-source code. In short, AI/ML 
algorithms, despite being probably less exploitable, are attractive vulnerability-based attack targets. 
One residual found vulnerability jeopardizes all derived AI/ML solutions employing it.  

A last element is the predominance of Python language in the AI/ML frameworks and, more generally, 
the preferred natural choice for any AI/ML application developer today. The security implications are 
discussed below.  

4.2.2 Classical attack paths on AI/ML and associated mitigations 

AI/ML has outweighed all ICT trends for a decade. By delivering the means to automatically generate 
applications for classification or inference, while classical coding would be highly complex if ever 
practical, the number of involved applications and industrial sectors has exploded. Because AI/ML 
becomes the decision-taking component of safety-critical systems, a massive research work has been 
produced on AI/ML security, safety, privacy and explainability.  

AI/ML security is a massively discussed academics research topics in the last decade. For a 
comprehensive analysis, we would consider the reading of [81] which brings a clear taxonomy and it 
is relatively recent.  An adversarial attacks survey is given here [82], while defensive techniques are 
detailed in [83]. Evasion attacks are detailed and categorized in [84], while Poisoning attacks are 
detailed by the same team in [85]. An interesting open-source tool box for Python AI/ML is given in 
[86]. It is worth stating that this bibliography is only aimed at delivering a general overview as new 
publications are continuously produced. For further information, four main classes of Adversarial ML 
(AML) are given in Table 6 in Appendix A.  

From this initial technical investigation in T3.3, our recollection includes: 

• AI/ML is driven by data analytics and statistics processing where the efficiency is related to 
performance, data quality and constant feature distribution laws (from training to test 
samples). Classical data-driven defences are equally featuring probability rules and detection 
scores.  In this probabilistic domain, any techniques which help in dropping the attack success 
rate or the return on investment (e.g., Machine Learning-as-a-Service (MaaS) black box model 
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stealing) shall be considered.  

• Defences directed to a specific attack vector could degrade the efficiency of the model 
elsewhere. Generic and low-level defences shall be prioritized versus focused ones. 

• Some discussed defences (e.g., Ensemble, Cascade, gradient masking) are probably too 
complex for wildcard developers and more likely to be used by AI-as-a-Service (AIaaS) vendors 
experts. 

• Input denoising and evasion detection techniques are interesting as being generic. 

• Getting the model in clear is not a strict requirement for a successful attack but a strong driver.  

• Model stealing although referred as an attack per-se while it is a first step of adversarial 
learning attacks (i.e., evasion and poisoning).  

• The transferability principle is a main driver in black box conditions.  

• Retrained models are (far more) exposed to poisoning attacks. AI/ML techniques implemented 
on 5G network management belong to this category. 

4.2.3 Software security relevance for AI/ML solutions in networking. 

With softwarization of networks, there emerges tight coupling between software security and network 
security regarding AI/ML schemes. Leveraging AI/ML solutions for autonomic real time management 
and optimization of the next generation of telecom network is a technical domain per-se. While there 
is a stock phrase stating that leveraging AI/ML is an unavoidable for the management of 5G networks, 
there is the same appreciation for the security risks this situation poses. Moreover, if AI/ML driven 
control is compromised, that may lead to large-scale impact due to automation and closed-loop 
control.  

 As all pre-cited techniques, there is no absolute defence and all defences shall be studied with their 
mitigation efficiency, possible accuracy decrease on clean data and their associated performance 
impact. Finally, the MTD principle applied on AI frustrates the carving of attacks targeted for fixed 
targets (i.e., static algorithm, static model, static training data), through dynamicity and variability. This 
research is certainly at its initial stage and as stated by the authors will be discussed on the heavy 
workflow and performance impact issues.  

The technical survey made above, in a general perspective, in the context of applying AI/ML for 5G and 
Beyond networking, leads us the following conclusions: 

• In this domain of Adversarial Machine Learning (AML), both attackers and defenders develop 
data-based techniques derived from data analytics and data statistics with the idea to carve 
attack vectors with high hit rate and equivalent detection ability on the other side. Both sides 
reside in some kind of uncertainty. Every technique which hardens the life of the attacker and 
drop the attack efficiency will be welcome and analysed in terms of “operational” security 
merits, overhead and setup issues. 

• Before taking a closer look on the most promising software security techniques and associated 
best use for AI/ML pipeline security, it is worth restating the large functional scope brought 
by software security measures. Various complementary techniques can be applied on 
software for its security. From vulnerability remediation to variant singularization, execution 
control and run-time monitoring, the scope of possible hardening techniques is large and 
largely unemployed as of today.  

4.2.3.1 Novel software security techniques applied to AI/ML implementations.  

We introduce and discuss here techniques which have recently emerged in a general perspective, or 
which have not yet been applied to AI/ML domain yet (to the best of our knowledge). 
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Software singularization: The idea is to generate different variants for each deployment. The 
differentiation is created on the software binary with a differentiation ranging from simple identity 
secret appending (on the same untouched binary for all deployments) to the most complex scheme 
where each line of code is rewritten/reordered. While the former scheme provides one identification 
label possibly gathered at a centralized MANO, the latter employs MTD in the context of vulnerability 
exploitation attack. 

Software remote control and monitoring: Software executable artefacts can be modified to insert 
monitoring probes (i.e., typically inserted at each instruction block of the software flow graph) to infer 
abnormal execution patterns collected and analysed either at the same execution platform or in a 
remote centralized workstation. Identically, the same artefacts can be modified to check at run-time 
their integrity. The centralized control solution would make certain that tampered variants execution 
stops and that only variants which show regular execution pattern keep running. A rollback to the 
original form of the artefacts can be initiated from a tampering detection.  

Software geolocation: Software geo-location refers to a link that binds the software execution on a 
specific machine (or set of machines). Knowing the bound machine’s location(s) brings software geo-
location. The binding can be loose or strong according to the hardware anchoring type, ranging from 
a simple secret stored on the machine at a known path of the file system up to the storage in a trusted 
execution environment for that secret. When combined with variant singularization, it enforces that 
one specific variant executes only at a one given location which has been provisioned with the secret.    

Software self-authentication (and associated self-boot): Deploying and running authenticated 
software is of primary importance for the networking industry and, more generally, cloud operated 
services. With no claim to replace the highly specified authentication scheme, a complementary 
traversal and in-depth self-authentication of binary files at their initiation stage can be offered. The 
essential benefit of the self-authentication light scheme is its total independence to the 
infrastructure’s technical requirements which are required for classical remote authentication 
schemes (e.g., kernel-based report verification primitive, Trusted Platform Module (TPM) on the 
platforms, local agents, and remote verifier). Self-authentication (and its associated self-boot) are 
inserted routines inside the original binary file at protection stage. The report and the needed key to 
check it are also appended inside the binary. In the perspective of instance singularization, self-
authentication releases the burden of delivery different measurements corresponding to each singular 
variant to a verifier and the associated complex workflow management.  As a matter of fact, each 
variant carries its own report and produces the authentication verification test (on itself) by itself. For 
further information, Table 7 in Appendix A summarizes the security contributions brought by software 
security in AI/ML solutions. 

As a conclusion, it comes that classical (e.g., Trusted Execution Environment (TEE), remote 
authentication, runtime integrity) and novel (singularization, self-authentication, geo-location, control 
flow run-time monitoring and execution control) techniques can significantly improve AI/ML taking 
part in 5G networks, independently to what data-centric AML techniques would bring. The former 
(classical) techniques are already employed. TEE by its protection of both model data and software 
offers a strong defence against model stealing. TEE concept actually turns the white box attack 
conditions into black box conditions. The following section makes a focus on TEE. The latter (novel 
techniques) are not used yet and bring new means to detect and inhibit nefarious nodes or data, 
specifically in distributed machine learning implementations.   

4.3 TEE utilization for AI/ML security in 5G networking 

Model stealing is the main gate for the attackers and, in most cases (e.g., poisoning, evasion), the first 
stage or a strong facilitator for the attack. TEE security contribution is unique as it brings ultimate 
confidentiality and integrity to both model components altogether (parameters and algorithm). TEE 
concepts, along with their weaknesses (e.g., performance impact, workflow consideration) and risks 
(e.g., side channel attacks) have been discussed in deliverables D2.1 and D2.2, respectively. In short, 
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whatever past successfully mounted side channel attacks on Intel SGX enclaves, they can only be 
successful on pre-known victim code (which could eventually become the case if an enclaved 
framework (i.e., TensorFlow inside SGX) becomes too popular. The main concern with TEE relates to 
software workflow (e.g., processor-dependent, software changes for Intel SGX, and required expertise 
to setup) as well as the performance costs. What follows details how TEE concept has been used and 
will probably be used to prevent model stealing attacks precisely on a general perspective. 

4.3.1 State of the art  

In [87], the authors first recall the security and data privacy loss risks exposed by multi-party learning 
models likely to take place in 5G network management (e.g., operators may not share their network 
operating metadata) as well as the merits of Intel SGX to mitigate these risks. Because of the expected 
performance losses incumbent to SGX, the authors produce some optimizations for customized binary 
integration of learning algorithms (K-means, CNN, SVM, Matrix factorization) and stress the 
requirements for data obliviousness which preserve privacy for the training and sample data, collected 
and generated outside SGX. In doing so, the authors map the security and privacy issues holistically, all 
way through the complete AI data pipeline. The incurred overhead when running the model inside SGX 
varies from a more than satisfactory 1% to a more impacting 91% according to the algorithm type 
(respectively, CNN and K-Means). In [88], the authors deliver efficient deep learning on multi-source 
private data, leveraging Differential Privacy (DP) on commercial TEEs. Their technology dubbed MYELIN 
shows similar performance (or negligible slow down) when applying DP-protected ML. To do so, their 
implementation goes through the compilation of a static library embedding the core minimal routines. 
The static library is then fully run in the TEE, which removes any costly context switch from the TEE 
mode to the normal execution mode.  Specialized hardware accelerators (Tensor Processing Units - 
TPUs) are also viewed as the necessary step to take for highly demanding (fast) decision taking. That is 
a grey area, with no existing TEE embodiment for specialized hardware to the best of our knowledge. 
In addition, leveraging TEE data sealing capability looks like another path to consider for further 
improvements. In [89], the authors deliver a fast, verifiable and private execution of neural networks 
in trusted hardware, leveraging a commercial TEE. SLALOM splits the execution between a Graphics 
Processing Unit (GPU) and the TEE while delivering security assurance on the GPU operation 
correctness using Freivalds’s algorithm. Outsourcing linear process from the TEE to the GPU is aimed 
at boosting performance, in a scheme that can be applied to any faster co-processor. Full TEE-
embedded inference was the bottom line of this research, deemed as not satisfactory on the 
performance aspect.  

In [90] , the authors recall the need for ever-growing and security-privacy sensitive training data set 
which calls for cloud operation, but this comes with its own off-premise security issues. The authors 
describe the cloud operation security threat as being training data and model stealing by a cloud 
operator and advocate for the perfect remediation of these risks by leveraging SGX enclave TEE. For 
that, they employ SCONE framework which drastically limits the efforts to integrate an application 
inside SGX. TensorSCONE design comprises two main components placed within SGX: TensorSCONE 
controller interfacing with the system for system calls (network, filesystem, user space thread) and on 
the other side the TensorFlow Library which enables to deploy untouched TensorFlow application. The 
authors describe the integration of the different TensorFlow components, namely the learning from 
TensorFlow and the classification from TensorFlow Lite, the feature-reduced variant designed for 
mobile and embedded devices. The objective of this selection is to meet the SGX’s Enclave Page Cache 
(EPC) memory restriction (below 128 Mb for older devices, while from Intel 10th Gen the limit was 
raised to 1TB) while maintaining TensorFlow features, when possible, to keep the ML application 
framework easy and efficient. The authors discuss the performance losses compared to native 
TensorFlow implementations at both stages of training and classification, with a benchmark on image 
recognition (i.e., inception-v4). Classification throughput is degraded with a ratio 3, while training 
latency is inflated with a ratio 4 to 8.  The authors do not foresee or discuss major gains in performance 
while have gone deep in their understanding the several causes of SGX induced losses (inevitable page 
swapping for large size sampling and training data) and instead consider approximate computing as a 
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possible loss saver. In [91], the authors propose a design to extend GPUs hardware with a hardware 
standard extension to offload kernel and security sensitive applications into the GPU. Graviton is a 
design to break the classical TEE performance bottleneck. Beside the detailed design explanations, the 
authors describe a typical implementation as Cifar-10 convolutional network. As the solution is not 
materialized in a chip, simulation is used to evaluate the performance overhead as being in the range 
from 53% to 73% according to the training phases. As AI/ML is becoming the hottest trend in ICT at 
the current time and GPU are well-fitted to parallelized processing of model generation, we may see 
emerging GPUs coping with AI/ML application security, featuring probably less workflow constraints 
and performance overhead than classical TEEs. Graviton is probably the initial (emulation) step in this 
direction. 

Securing AI by means of TEEs is a nascent discipline, at its early stage, with encouraging results recently 
reported. From this first survey however, it appears that turnkey frameworks (TensorSCONE) are far 
more costly in terms of performance overhead compared to what can be achieved by more demanding 
customized integration. We expect that performance of AI/ML oriented SGX tools will be improved 
and optimized over time.  

4.3.2 Lessons learnt in leveraging SGX 

Intel SGX allows protecting in confidentiality, integrity, authentication and freshness of code and data 
specifically implemented for it. It allows to attest the Trusted Computing Base (TCB), to make sure the 
hardware is not being spoofed, and allows the provisioning and storage of secrets as a foundation to 
build up complex solutions. It has been designed to separate parts of a process and shelter them from 
the rest of the host. In this definition the Operating System (OS) is not considered a part of the TCB 
and, right for this reason, system calls are not supported from within the enclave, because they would 
execute untrusted code from the OS. Still, SGX includes instructions that let the code temporarily exit 
the enclave to call untrusted code so to perform, for example, I/O and then return to the enclave; this 
imposes a performance penalty and provides opportunities for bad implementations. 

This implies that any input coming from the untrusted world, for example plain file or network reads, 
brings no guarantees on the validity and integrity of the data, since it might be tampered anytime by 
the host. To prevent this, a security mechanism must be put in place between the parties that are 
interconnected by enclaves (e.g., encrypt ed files or secure TLS connections with remote hosts) and 
the data should only be decrypted inside the enclaves. With these guidelines in mind, in the next 
paragraphs we are going to evaluate the challenges in designing a seamless secure data flow in a 
machine learning lifecycle. 

Secure AI in MLOps 

Maintaining a ML solution in production means taking care of multiple interconnected systems: data 
collection, data processing, feature engineering, data labelling, model design, model training, endpoint 
deployment, and endpoint monitoring (Figure 23). Each of these steps is often the result of a 
combination of interactions with multiple heterogeneous subsystems, for this reason putting in place 
a security-aware baseline becomes a challenging task if not implemented right from the design stage 
of such a complex architecture. 

 

Figure 23: ML pipeline 

In the following part, we evaluate the efforts and results of bringing a measurable incremental security 
improvement using Intel SGX. For the sake of simplification, the complete machine learning pipeline 
has been broken down into three main ML lifecycle phases, but clearly it can be applied to fit any 
different scenario. The phases taken into examination are:  
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1. dataset collection and processing, 

2. model (re-) training 

3. run-time inference. 

The security criteria being evaluated are data confidentiality, data integrity and traceability of all 
involved parties. In particular, in the dataset collection phase we address the threats of stealing or 
poisoning of the training data, which could undermine respectively the intellectual property or the 
accuracy and reliability of the solution. Downstream, to the training phase, there will be an additional 
verification of the integrity of the dataset, aimed again to counter poisoning attacks of the data corpus 
that was transmitted to the model training infrastructure. At inference time, the goal is to protect the 
intellectual property of the model, against white box stealing, and to protect the integrity of the model 
and of the inference process itself, to guarantee the accuracy and reliability of the solution. 

Hands-on experiment: Securing dataset collection and processing with Intel SGX 

As described in Section 4.2, to ensure the data gathered in this phase is legitimate and not tampered, 
in order to ensure a seamless secure data pipeline, it may be necessary to protect additional upstream 
processes involved in data generation or collection. 

For example, input data may come from sensors implemented with secured hardware, but in case of 
generative software processes, typically in RL, or in case of data coming from log files, even these 
additional processes may require a secure implementation with Intel SGX. 

To test the efforts and the impact of implementing security with Intel SGX in a data pipeline pre-
processing stage, we examined one use-case that involves the processing of a dataset made of 1,593 
XML documents weighting on average 42,079 KB, for a total size of 67 MB.  

The original code, written in Python, for each file, collects a subset of relevant fields and serializes them 
to a corresponding JSON file. In the normal use-case, the task is performed in the context of a micro 
web-service and the response to each request is sent to other tasks downstream. To simplify the 
measuring of performances, in the test environment the input and output files are read and saved on 
local storage. 

To simulate the security context around this specific pre-processing stage, we encrypted each file of 
the input dataset using the SGX standard AES GCM 128. This operation increased the dataset size of 
just 44,604 bytes due to padding, intrinsic to the encryption algorithm.  

Instead of porting the Python code to C++ to use the standard Intel SGX SDK directly, we decided to 
re-implement the code in Go language, using EGo, an open-source SDK that enables to develop SGX-
powered confidential apps in the Go programming language [92]. 

Compared to the direct use of Intel SGX in C++, the ease of EGo comes with a price of slightly over 8s 
in order to boot the process. This overhead is only sensible at launch, and it is due to how EGo loads 
the main binary into the enclave. Since, as stated above, the normal execution context of the pre-
processing would be within a web service, the slower start-up time should not be considered in our 
benchmark, having the process always on. 

Porting the code from Python to Go language was straightforward, since both languages come with 
feature-rich standard libraries and are surrounded by prolific open-source communities. The use of 
EGo significantly reduced the time that would have been necessary to port the code in C++ and to use 
the SGX SDK directly. On the other hand, the biggest drawback was the lack of control in defining the 
clear-cut boundaries of what is computed inside the enclave and what in the untrusted domain. 
Therefore, performance is often lost in unnecessary context switches, dealt by expensive ECALL and 
OCALL instructions, to jump in and out of the enclave. 
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Figure 24: Comparison of dataset pre-processing times with/without SGX  

Figure 24 shows that the Go implementation of the code, even if it had the additional tasks of 
decrypting the input files and encrypting the output after the pre-processing, performed over 20% 
faster than the Python counterpart. This result was expected, being Go binaries compiled into native 
code, instead of having the Python interpreter. The EGo SGX version of the implementation comes 
with a performance overhead of about of 1.58 seconds (71%) from 2.22 seconds up to 3.8. Such a 
performance penalty could be considered negligible in all ML use-cases where confidentiality and 
integrity of the dataset, and of the complete solution in general, are not an option. 

In any case, the result of a 71% increase must be taken as an upper bound, because an in-depth analysis 
of the resulting Go binary confirmed that the generated code performs a significant amount of trusted 
world to untrusted world (and vice versa) context switches, causing most of the penalty. They are due 
to how the XML data is deserialized into the corresponding data structures and how the result is then 
serialized into the final JSON, specifically performing system calls to dynamically allocate memory, to 
read and write files.  

The performances were measured on an Intel Core i7-7700HQ CPU at 2.80GHz, running on an Ubuntu 
18.04.6 LTS with 16GB of RAM. 

Hands-on experiment: Model training 

Prior to the availability of 10th generation of Intel processors, which increased the limitation of the 
SGX EPC size from 128MB to 1TB, securely training deep learning models on SGX was deemed 
unfeasible, due to the memory-intensive nature of the task, that requires too many costly memory 
management operations. 

In general, handling sensitive data in machine learning datasets is a hard and not yet solved problem. 
Several techniques are known in literature to avoid disclosure of sensitive data during the training 
phase of a model, most of which comes as a way to comply with various regulations such as HIPAA, 
PCI-DSS or GDPR. Most used techniques revolve around modifying the dataset before transmitting it 
to the AI/ML training compute provider. These modifications are often a combination of: 

• Data removal: when the information is not strictly necessary for the project, it can simply be 
suppressed from the input data. 

• Data masking: when the data is indeed useful, it may be possible to mask it using in a non-
destructive way. Known techniques are: 

o Using a substitution cipher, replacing all occurrences of it with an encrypted or hashed 
counterpart.  

o Performing tokenization (also referred to as pseudonymization) which replaces 
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sensitive values with an unrelated dummy token and adds an additional layer of 
protection by storing the substitution tokens into a separate database. 

o Using a dimension-reducing technique, such as Principal Component Analysis, to 
combine several features and then carry out ML training only on the new combined 
feature. While this approach is quite secure, because relies on the secrecy of 
dimension-reducing formula, it often comes at a cost of accuracy. 

• Data coarsening: the idea is to lower the resolution, precision or granularity of data, like by 
rounding numeric data, masking bits in IP addresses or generalize geo-location data. 

Encryption and dimension-reducing techniques are susceptible to frequency analysis attack, while data 
removal, tokenization and coarsening may significantly reduce the performance of the predictions. 

The size and quality of the training dataset is usually a key factor to the success of an AI solution. In 
addition, for compliance with various regulations, there are often confidentiality issues related to 
sensitive data in the datasets. In such cases, performing the training of a neural network on the cloud 
can pose significant intellectual property or data confidentiality problems.  

For this reason, it is reasonable to expect in the near future security-aware dedicated hardware for 
machine learning able to guarantee end-to-end confidentiality of the dataset and of the resulting 
trained model. In the meantime, several vendors of cloud services started to offer in-database model 
creation, training and inference local to the data warehouse. This solution avoids all the security risks 
involved in distributing confidential data to different teams, while preserving the access only to the 
specific portion of data each user inside the company would normally have. 

The scope of the hands-on incremental security enhancement for the training phase, integrated with 
the one of data collection, described in the previous paragraph, is limited to guarantee the 
confidentiality of data in transit and at rest, verify the integrity and the good origin of the dataset, 
before performing the training. During the training, in fact, the dataset does not benefit of 
confidentiality, sitting in clear memory without involving SGX in any way. 

After the training is performed, the outcome model is then encrypted, again using SGX, and is ready to 
be archived and deployed on secure machines to perform inferences. 

For the experiment, we took a dataset stored as a Comma Separated Values flat file with a size of 26.2 
MB. In the normal setup, this file is in clear, read by a Python script that reads it with Pandas and then 
Keras and TensorFlow to split it into training, validation, and test sets, to train a model. 

We added an initial step of decrypting and authenticating the dataset which was encrypted with a pre-
shared secret key, using the SGX standard AES GCM 128 encryption algorithm. This additional task 
added a cost in time of around 390ms to complete. 

Similarly, we added a final step of encrypting and authenticating the model before the final remote 
storage. The output model weights and metadata were sized 27.8MB and the task of encrypting and 
tagging it takes about another 400ms. 

The performances were measured on the same machine as per the previous paragraph. 

Hands-on experience: Inference time 

To protect the confidentiality and integrity of the model, of the input and output data and of the 
inference process itself, we reviewed a couple of existing alternative Intel SGX backed 
implementations: Scone TensorFlow Lite and MarbleRun TensorFlow demo by Edgeless Systems. 

Having a Kubernetes cluster and Helm are two prerequisites to run Scone demo, while MarbleRun can 
be run as a standalone instance, requiring the installation of Docker, Gramine and some Python 
dependencies. Both technologies share the same main principles:  

1. The model is encrypted and transferred into the container. 

2. After an attestation process (based on a service named Palaemon for Scone and MarbleRun 
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for Edgeless System) the secrets to decrypt the model are provisioned to the service. 

3. The input data query is securely transmitted to the TensorFlow service which emits its 
prediction output. 

We tested the SCONE TensorFlow-Lite demo, which runs inference on the lite version of the Inception-
v3 model, an image recognition model that is used to recognize and label objects in an input image. 

The increase of computation time for SCONE TensorFlow Lite for inferences was nearly 50% of the 
original time, passing from 6.4s without SGX and reaching 9.4s when activating SGX. 

At the time of writing, no performance data is available for Edgeless Systems implementation. 

4.3.3 Findings and discussion  

Python, Lua and Java as interpreted and strongly typed languages are massively used in AI/ML 
frameworks and are not immune to vulnerability-based attacks as they all support and embed a 
significant amount of C language code lines for their interpreters. For this reason, it is important to put 
in place all known security DevOps best-practices, coupling as loosely as possible the services to 
specific software versions so to minimize the effort required to test, validate and deploy updated 
services running on latest software versions. 

The security of AI is a multi-factorial problem with a design space embracing the global pipeline nodes 
and the specific security threats or security concerns on the data.  For each of these steps, one shall 
define the plausible security threat, existing regulations, assess the availability and usability of 
hardware shielding techniques and the relative constraint in terms of performance and vendor 
selection. In this respect, the work-flow may be a critical issue of TEE usage as being processor vendor 
specific and as reflected in D2.1 remains true. 

Novel techniques as evoked in Section 4.2.3.1 are certainly pertaining in automated networking 
management, as bringing complementary and relevant security properties in any operating contexts 
(e.g., TEE availability, typically in distributed nodes layouts). The network extracted metadata must be 
qualified on their privacy or security sensitiveness so that the optimal security design can be drawn. 
The grand benefits of these techniques are their universal deployment as they are not restricted to 
specific processor features and their complementarity and orthogonal to all data-driven adversarial 
techniques.  

Usage of Intel SGX in production to perform secure end-to-end data pipeline is becoming a viable 
possibility. In Section 4.3.2, we implemented a secure SGX dataset pre-processing step that, while 
imposing a significant performance penalty, leaves enough margin of optimization to comply with 
scenarios of strict computational constraints, such as high-volume real-time data pipelines. 

In Section 4.3.2, we tested a solution to run secure neural network model inferences and the 
performance penalty is deemed compatible in scenarios where the confidentiality of the model, of the 
input data and the overall integrity of the inference process are important factors. 

In Section 4.3.2, we also wired together the dataset collection and inference phases with the model 
training one, in order to authenticate and decrypt the input dataset and to encrypt and sign the trained 
model for later deployment. The only part of the pipeline that still requires a solution is the AI training 
phase: while newer Intel 10th generation processors provide amounts of EPC memory compatible with 
training tasks, due to performance needs, some training is only viable on dedicated GPU or TPU 
hardware, for which today there is no way to ensure an end-to-end confidentiality protection of the 
data. However, in many use-cases, such as 5G network traffic metadata analysis, there could be no 
real need to guarantee the confidentiality of the dataset during the model training phase, for different 
reasons: for example, the training could happen on local on-premise hardware, where necessary 
security standards are in place, or the security mitigation practices described in Section 4.3.2 can be 
considered sufficient. 
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5 Specification of the enablers’ APIs 

The T3.3 enablers will provide APIs to integrate with the INSPIRE-5Gplus architecture as well as among 
each other. The general API rationale is to integrate the entities in a simple yet capable way to realize 
the planned demonstrations. In the following part, API specifications are listed for T3.3 enablers. 

5.1 Smart Traffic Analysis (STA) 

The systems provide one main API for managing and configuring the STA. Additionally, based on 
configuration, a detection triggered events report will be generated with the results of the ML analytics 
results. 

The Management STA API interfaces are detailed in Table 4. 

  
Method 

  
URL 

Required Data 

Objects 

Returned 
Data Object  

GET /sta/status/{uuid} UUID 200, Status 
JSON 

POST /sta/start/{uuid} UUID 200, Status 
JSON 

POST /sta/stop/{uuid} UUID 200, Status 
JSON 

POST /sta/restart/{uuid} UUID 200, Status 
JSON 

POST /sta/configure/{uuid} Configuration 

JSON 

200, 
Configured 

JSON 

Table 4: Smart Traffic Analysis API  

They are designed to manage (status, start, stop and restart) and configure the STA. The configuration 
will include the relevant parameters such as: monitoring interface, reporting interface protocol, ML 
model and features to use). One example of Configuration JSON is shown in Figure 25. 

{ 
  "interface": "eth1", 
  "kafka": { 
    "enable": true, 
    "servers": [ 
      "127.0.0.1", 
      "127.0.0.1:9092"   ], 
    "topic": "sta_values" }, 
  "kibana": { 
    "enable": false }, 
  "model": { 
    "name": "sta_crypto.pkl", 
    "tstat_features": [ 
      1, 
      12, 
      13, 
      43, 
      12, 
      32, 
      54    ], 
    "tags": [ 
      "NO Crypto", 
      "Crypto"   ] 
  } 
} 

Figure 25: Example of Configuration for STA  
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The STA reports events detections provided by the inference ML engine based on JSON. Two different 
mechanisms and protocols are supported: REST API and Kafka message. The common JSON format 
implemented (Figure 26) identify a malicious network flow, univocally by the typical five-tuple:  IP 
addresses (origin and destination), protocol (UDP/TCP), ports origin and destination, and the 
confidence level assigned to the prediction tag matched.   

 

{ 

    "timestamp": "2021-12-23T10:05:08.435000+00:00", 

    "confidence": "0.9", 

    "flow_id": "10.0.27.1904432634.192.145.1134431640253908435", 

    "ip_d": "34.192.145.113", 

    "ip_o": "10.0.27.190", 

    "port_d": "44326", 

    "port_o": "443", 

    "protocol": "TCP", 

    "tag": "0", 

    "tag_name": "CRYPTO", 

    "time_end": "1640253909344", 

    "time_start": "1640253908435" 

} 

Figure 26: A JSON example of a STA detection  

 

5.2 MTD control and optimization using AI/ML 

OptSFC API is defined following the OpenAPI format. The API file descriptor can be opened with the 
Swagger editor, which interprets the REST requests and illustrates them with a graphic interface. The 
OptSFC API file is available in the INSPIRE-5Gplus Github repository: 

https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_OptSFC/WP3_optSFC.yaml 

The API is interfaced to the consumer, the MTD controller (MOTDEC), which is registered with an 
authentication key to guarantee the confidentiality and the integrity of the exchanged data and 
decision-making commands. 

The API also identifies the security agents, which will send threat intelligence, monitoring data and 
security to OptSFC, for the real-time modelling of the MDP. The security agents are also created with 
authentication keys, and are identified by their IP address, which can be of IPv4 or IPv6 format. The 
fields of the consumer and the security agents can be updated with the REST queries, illustrated in 
Figure 27. 

https://github.com/INSPIRE-5Gplus/i5p-hla-api/blob/main/WP3_OptSFC/WP3_optSFC.yaml
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Figure 27: Security agent entity and REST API query 

The security alerts are then sent to OptSFC by the security agents using the /attack  POST query, where 
the attack detected is reported based on its attack type (reconnaissance, DDoS, intrusion, 
eavesdropping, tampering, or infection), the protocol vector used for the attack (at the various layers 
of the TCP/IP stack), the resource targeted by the attack and present in the list of resources to be 
protected provided by MOTDEC (see Figure 28). The MTD operations chosen by the RL agent is then 
delivered to MOTDEC which will enforce them. 

 

 

Figure 28:  Attack alert and resource models 
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5.3 Lightweight and space-efficient vehicle authentication enhanced with 
misbehaviour detection 

The API abstractions for misbehaviour detection enabler are listed as follows: 

• "POST/configure/{uuid}": Send configuration parameters from the Security Orchestrator to 
deploy the V2X misbehaviour detector. 

• "POST/start": Start the analytics engine (RL-based detection algorithm). 

• "POST/initiate": Start the data stream (.csv format) to feed the security data collector. 

• "POST/stop": Stop the misbehaving data sources. 

• "POST/alert/{uuid}": Upon detection of misbehaviour, send an alert to the End-to-End (E2E) 
decision engine. 

RL-based misbehaviour detection performs security analytics on csv-formatted V2X traces which are 
streamed via the security data collector. The RESTful commands, such as GET and POST, are used 
within this enabler’s API.  At inception, the POST requests invoke a chain of actions, which are starting 
the analytics engine and starting the data stream to feed the security data collector. Upon detection, 
the POST request is generated to stop the misbehaviour data source as the countermeasure. Then, an 
alert is sent to the E2E decision engine through the POST request. The API descriptions are currently 
under development according to the required integration steps to be followed in Demo1. 

5.4 Security Analytics Engine and Security Agent (SA) 

The APIs of the Security Analytics Engine and SA implemented by MMT, the Security Monitoring 
Framework and its MMT-Probes, have been described in D3.2. The Security Analytics Engine integrates 
an ML-based module that performs anomaly detection in encrypted traffic (presented in Section 3.1.3 
of this document). The API provided by this module consists of RESTful POST and GET requests that 
are used both during the learning and real-time detection phases. The POST request starts the 
classification process based on the raw network traffic provided by the MMT-Probe. The GET request 
allows retrieving the results of the classification. When the classification is ready, a matrix of all 
extracted features is provided. If the results are not yet ready, a 404 value is returned and the request 
needs to be repeated later. This API can be easily changed to work in a publish-and-subscribe mode. 

5.5 AALTO/OULU’s DDoS Detector 

The API of the AALTO/OULU DDoS Detector consists of a RESTful POST request (See Figure 29) that 
triggers the DL-based malicious network flows identification process. An alert report is generated 
containing details on each identified malicious network flow, which include its Flow_ID (in the form 
sourceIP-destIP-sourcePort-destPort-protocolID) and the prediction confidence level. 
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Figure 29: REST API of DDoS Detector 

The format of the prediction request and the alert reports are given in Figure 30. The Open-API 
definition of the DDoS Detector in Yaml form is available in the INSPIRE-5Gplus Github repository 
(https://github.com/INSPIRE-5Gplus): 

 

 

Figure 30: Model of prediction request and alert report of the DDoS Detector. 
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5.6 AALTO/OULU’s DDoS Mitigator 

The API of the AALTO/OULU DDoS Mitigator consists of a RESTful POST request (See Figure 31) that 
triggers the DL-based anomaly detection process. The POST request takes a multivariate time series as 
input and generate an anomaly predictions report containing for each timestep, the computed 
anomaly score and the decision on whether the values of the VNF’s resources usage and performance 
metrics at that timestep are anomalous or not. 

 

Figure 31: REST API of DDoS Mitigator 

The format of the prediction request and the alert report are given in Figure 32. The Open-API 
definition of the DDoS Mitigator in Yaml form is available in the INSPIRE-5Gplus Github repository:  
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Figure 32: Model of prediction request and alert report of the DDoS Mitigator 

5.7 Anti-GPS Spoofing 

The API for anti-GPS spoofing is defined following the OpenAPI format. As illustrated in Figure 33, the 
API includes two interfaces, one for GPS verification and the other for model update. The modelUpdate 
interface is designed to update the spoofing detection model on the edge base station server, requiring 
the model ID, cellular ID and the update timestamp, and the response is whether the model has been 
updated successfully or not.  The gpsVerification interface is used by the UAV with POST method. It 
takes as inputs the location information, which is an array containing GPS positions and corresponding 
timestamps, and delivers a report specifying if the location positions are spoofed or not. 



D3.3: 5G security new breed of enablers 

Copyright © 2019 - 2022 INSPIRE-5Gplus Consortium Parties  Page 69 of 86 

 

Figure 33: REST API of Anti-GPS Spoofing enabler 
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6 Demonstration of D3.3 enablers 

6.1 Demo1 and INSPIRE-5Gplus AI/ML driven assets 

Demo1 aims at showcasing the INSPIRE-5Gplus security closed-loop as well as the instantiation of the 
High-Level Architecture, across multiple domains and sites interconnected through the Integration 
Fabric. To that end, the demo showcases the enforcement request of two Security Service Level 
Agreements (SSLA) across different Security Management Domains (the proactive part of the loop) as 
well as AI/ML driven attack detections that will trigger automatic security reactions (the reactive part 
of the loop). The first SSLA will be focused on deploying a 5G service and multiple security features like 
protecting the communication between the UE access domain and the 5G service domain (e.g., 
through a backhaul connectivity), as well as other security requirements to avoid security issues (e.g., 
abnormal behaviour detection in 5G network, DDoS protection). These security requirements will be 
enforced by deploying different INSPIRE-5Gplus AI/ML driven enablers that will ensure the SSLA 
compliance. 

 

Figure 34:  AI/ML driven enablers in Demo1  

 

Figure 34 highlights AI/ML driven security enablers that will be involved in the enforcement of the first 
SSLA. Below, a brief description of their role in the reactive part of the close-loop is provided. 

 

Security Analytics Engine 

The Security Analytics Engine (SAE) is used in the Demo 1 to provide a communication interface 
between the Security Data Collectors (SDCs), such as STAs or SAs, and the Decision Engine. MI’s MMT 
Security Monitoring Framework is a possible implementation of the Security Analytics Engine and SA. 
In this demo, the SAE receives alerts from the collector or agents and forwards them to the Decision 
Engine after analysis. It will also receive instructions from the Security Orchestrator to reinstall, 
redeploy, or reconfigure the data collectors. 

 

STA 

In this demo, the STA is in charge to collect different types of data in one Security Management Domain 
(SMD) as part of a secure slice deployed to apply analytics. The STA collects relevant network related 
packets in the 5G Core service. In this case the AI/ML capability provides the identification of 
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cryptomining activities in one software component concealed over encrypted HTTPS communications, 
as a Security Analytics Engine component. Once it is detected it reports the information to the domain 
Decision Engine, to take actions to mitigate the threat. Additionally, this information is provided in 
parallel to the Trust Reputation Manager to decrease the trustworthiness level of the slice and 
component. 

 

Misbehaviour detector 

In Demo1, a specific implementation of the enabler described in Section 3.1.2 will be performed. In 
particular, we aim to integrate the misbehaviour detection capabilities of our enabler towards the 
overarching goal of anomaly detection in Demo1 storyline. Figure 35 illustrates the core components 
of the enabler, i.e., Security Data Collector, Security Analytics Engine and Decision Engine, and their 
interactions within the HLA components. Security data collector performs the fusion of V2X network 
traces that are streamed from the data plane using VMs, in which VMs emulate the representation of 
vehicles within the RAN. These V2X traces are based on an open-source vehicular anomaly-detection 
dataset [23]. The incoming streaming vehicular data reports are sequentially analysed within the 
Security Analytics Engine based on the mobility patterns parameters such as position, velocity, and 
acceleration, to instruct an RL algorithm for the detection of misbehaviour patterns. The issued 
security policy is expressed using MSPL. Upon detection of misbehaviour, the detection framework in 
the decision engine provides the verdict to Security Orchestrator to apply the pre-determined security 
policy, i.e., misbehaving data source to be isolated, dropped, or blocked. 

 

   

Figure 35: Involved HLA components for misbehaviour detector in Demo1 

 

AALTO DDoS detector 

In Demo1, the AALTO’s DDoS Detector enabler will be integrated in a closed loop that allows fully 
automated detection and mitigation of external application-layer DDoS attacks within a slice instance 
deployed in an SDN environment and offering video streaming service. As illustrated in Figure 36, the 
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DDoS Detector enabler involves (i) a Security Agent and Security Data Collector for collecting network 
traffic; (ii) the Security Analytics Engine for extracting network flow features and analysing the 
extracted features using the DL model to detect specious network pattern; and (iii) the Decision Engine 
to issue the security policy (e.g., flow dropping) to be enforced by the Security Orchestrator. Note that 
the issued security policy is expressed using MSPL. In this Demo, we use the SDN controller ONOS to 
enforce the issued security policy after being translated by the Security Orchestrator into flow 
command. The attackers will be simulated using different containers launching HTTP DDoS attacks 
against a video streamer deployed as an NGINX web server. 

 

 

Figure 36: Involved HLA components for DDoS Detector in Demo1 

 

 

Figure 37: AI/ML driven enablers in Demo1 (SSLA2)  

Regarding the second SSLA, it focuses on securing sensor traffic between IoT sensors in remote sites 
and a global IoT supervision centre - interconnected via a dedicated 5G network slice - by requesting 
channel protection capabilities between IoT devices and the supervision centre’s IoT broker. Figure 37 
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highlights AI/ML driven security enablers that will be involved in the enforcement of the second SSLA. 
Following, a brief description of their role in the reactive part of the closed-loop is provided. 

MI Monitoring Tool 

The MI's Security Monitoring Framework (MMT [93]) is used in the Demo1 to collect different 
information concerning IoT network traffic and raise alerts when the traffic violates the IoT channel 
protection SSLA. It is an implementation of the Security Analytics Engine (SAE) and the Security Agents 
(indicated as MMT in Figure 37).  This figure illustrates the disposition of the Security Analytics Engine 
and its MMT-Probes with respect to the other enablers involved in the Demo1 IoT channel protection. 
The probe captures and analyses the DTLS cypher suite used in the communications between the IoT 
devices and the broker. It then issues alerts when the cypher suite corresponds to a lower security 
level than required, e.g., when attackers might downgrade the cypher suite to a weaker one or even 
to plain traffic.  

The probe is deployed together with Tages' Systemic solution providing a TEE in order to protect it 
against illegal tampering and modification attacks. Systemic will raise alerts when such internal attacks 
occur. The alerts will be sent to the Security Analytics Engine, which is in charge of forwarding them to 
the Decision Engine (DE). The latter may require that the Security Orchestrator (SO) triggers a 
predefined security policy, such as blocking the malicious IoT device's traffic, redeploying MMT-Probes 
to a safe location to avoid internal attacks, or reinstalling/redeploying an MMT-Probe to a pristine 
version as part of the mitigation of internal tampering or modification attacks. 

6.2 Demo3 and INSPIRE-5Gplus AI/ML driven assets 

Demo3 aims at showcasing an automated closed-loop security application based on MTD mechanism 
for the proactive and reactive security of network slices and VNFs. 

MTD operations are based on the reconfiguration and strategic placement of virtual resources, 
reducing the attacker's knowledge of the network, and obscuring its attack surface.  

Demo3 requires state-of-the-art machine learning in order to automate the security process in a 
complex and dynamic environment such as 5G. ML is applied in multiple stages of the closed loop: 1) 
monitoring and detecting anomalies and 2) optimizing the decision-making system.  

 

 
 

Figure 38: AI/ML enablers in Demo3  
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These AI/ML requirements are covered by different INSPIRE-5Gplus enablers described in the previous 
sections. They are in the Demo3 storyline depicted in Figure 38, namely: 

 

Anomaly Detection Framework - ADF (NCSRD) 

Demo3 integrates the anomaly detection system described previously in Section 3.1.3. In fact, an 
important aspect of Demo3 is the joint analysis of heterogeneous data from points of interest within 
the 5G infrastructure for integrated monitoring. Security Agents will act as distributed probes that will 
be deployed on-the-fly and adapted to changing requirements and topology. These probes will extract 
data from packets, flows, system and applications logs that will be subsequently used by the Anomaly 
Detection Framework (ADF) and the MTD mechanism. The ADF will focus on detecting and classifying 
anomalies associated with security incidents and will inform the MTD enabler for their subsequent 
mitigation and resolution for protecting the deployed slices. 

 

MTD strategy optimization - OptSFC (ZHAW) 

OptSFC is the enabler that learns and optimizes the MTD strategy using RL, as described in Section 
3.1.1.  OptSFC bases its decision-making on the near-real-time monitoring data collected by the 
network slice manager, the NFV orchestrator, and the network metrics measured by the MMT-Probes 
on the edge nodes. Such data is used to model the MDP, formally representing the network run-time 
state (as described in Section 3.1.1). Moreover, the security alerts of the Anomaly detection system 
are received to decide on the reactive MTD operation aiming to mitigate the incident.  

The MDP modelled by OptSFC is independent of the RL agent used for the training phase and the 
decision-making. Hence, multiple RL algorithms can be benchmarked to explore which one has the 
best performances. The RL agent is trained in an off-line 5G testbed before its deployment in 
production. However, continuous training can also be established during production, adapting the RL 
model to the dynamics of the network. 

 

MMT-Probe 

Here, the MMT-Probe [94] fulfils the role of the Security Agents that will monitor the network traffic 
and extract the features required by the ML algorithms during the learning and operation phases. 
Currently, 59 features are provided related to packet and session characteristics (e.g., number and 
types of packets, protocols and encryption used, duration of sessions, sizes of packets and sessions, 
times and frequency, and more).   

More details for this demonstration will be provided as part of INSPIRE-5Gplus WP5 outcomes. 
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7 The INSPIRE-5Gplus cognitive security landscape and D3.3 
enablers 

In this section, we describe the overall picture of D3.3 cognitive enablers in the INSPIRE-5Gplus project 
and how they are characterized. This description aims to provide an overview on how they utilize 
AI/ML to provide their functions in terms of particular AI/ML techniques, datasets and mitigated 
threats. To this end, the following table (Table 5) shows how the enablers rely on AI/ML for their 
security functions. As shown in that depiction, INSPIRE-5Gplus heavily utilizes AI/ML models, trained 
using open-source datasets and generated datasets (labelled in Table 5 as “GD”) from various scenarios 
and testbeds developed in the project. Moreover, the Mouseworld enabler plays an important role 
and provides dataset generation support for cognitive enablers, thanks to its network digital twins 
infrastructure (Section 3.2.1). 

The key ML technologies used in INSPIRE-5Gplus cognitive security functions are RL (Q-learning, A2C, 
PPO, and DQN), DL (MLP, CNN, SAE, and AE), FL, and useful combinations of these.  

The OptSFC enabler learns MTD strategies based on the network state observed, benchmarking various 
RL algorithms and DL variations (Section 3.1.1). On the other hand, the V2X misbehaviour detector 
uses RL to identify vehicle misbehaviour by modelling the problem into a sequential decision-making 
process using MDP (Section 3.1.2).  

The Security Analytics Framework (SAF) and the Advanced Encrypted Traffic Analysis (AETA) 
(respectively, in Section 3.1.3.1 and Section 3.1.3.2) both develop a ML solution combining SAEs and 
CNNs for advanced fingerprinting and behavioural-based detection of network traffic related to attacks 
or anomalies, even when encrypted at the networking layer (IPSec) or the application layer (TLS).  

The DDoS detector of UMU combines a more conventional GMM algorithm with DL Autoencoders to 
detect DDoS attacks on multi-domain and multi-tenant NFV environments. At the same time, 
AALTO/OULU proposes a solution based on MLP and LSTM-AE for DDoS detection in cloud-native 
networks with auto-scaling capabilities (Section 3.1.4).  

The Anti-GPS spoofing enabler uses MLP combined with classical statistical methods such as MVSK, 
BOX, and WD to predict whether a reported GPS position is legitimate or the result of a spoofing attack 
(Section 3.1.5). The robust federated learning enabler aims to secure FL deployment against model 
poisoning performed when learning nodes are partially under the attacker's control (Section 3.3.1). 
Finally, the TEE leveraged for AI/ML enabler extensively studies and showcases protection of ML 
models during both training and inference phases using Intel SGX TEE (Section 4.3). 

 

Enabler Partner AI/ML relevance Additional labels Used dataset(s) 

OptSFC ZHAW MLP, CNN, RL  GD 

V2X misbehaviour 
detector 

CTTC RL  VeReMi 

SAF NCSRD CNN, SAE CTI NSL-KDD 

Advanced encrypted 
traffic analysis 

MI CNN, SAE CTI GD 

DDoS detector and 
DDoS mitigator 

UMU GMM, AE  GD 

DDoS detector and 
DDoS mitigator 

AALTO/OULU MLP, LSTM-AE  CICIDS2017, GD 

Anti-GPS spoofing AALTO/OULU MLP  GD 
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Enabler Partner AI/ML relevance Additional labels Used dataset(s) 

Mouseworld TID  CTI GD 

Robust federated 
learning 

OULU FL  MNIST 

TEE utilization for 
AI/ML security 

TAGES DL  GD  

Table 5: INSPIRE-5Gplus security enablers in D3.3 and their AI/ML aspects 
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8 Conclusions 

As presented in the previous overview section, each D3.3 enabler addresses central challenges 
relevant to the security of 5G and B5G networks in different perspectives and for various security 
scenarios. 

Services supported by the same infrastructure have requirements and network related behaviours. 
Added to the fact that communication is encrypted, most of the legacy monitoring tools become 
insufficient to counter emerging large-scale and zero-day attacks. Moreover, the cloud- native nature 
of the underlying infrastructure also increases the attack surface of such telecommunication networks, 
demanding for proactive and resource efficient cognitive security solutions.  

This work shows that AI/ML techniques improve the identification and detection of network traffic 
related to malicious activities, such as Botnet traffic, DDoS attacks, V2X misbehaviour, and GPS 
spoofing. It optimizes security mechanisms such as MTD, which requires proactive and efficient 
decision making. In the same security context, ML models should be protected against attacks affecting 
the training or the inference of the model. This is particularly true when dealing with distributed ML 
systems as with FL, highly sought after in 5G/B5G networks. The study and work done on improving FL 
security, as well as the novelty of TEE protection of ML models give promising results in terms of 
feasibility and performance, highlighting the direction of future research and work. 

The enablers presented in this deliverable and achieved by the INSPIRE-5Gplus T3.3, contributes to the 
main objective of the project, identified as realizing automated security management and 
orchestration aligned with the ZSM closed-loop specification, covering the complete 5G/B5G 
infrastructure. The leverage of protected SotA AI/ML is crucial to obtain such automation property in 
a diverse multi-tenant and multi-domain environment.  

In the upcoming INSPIRE-5Gplus WP5 activities, these enablers will be further integrated into actual 
demonstrations for empirical performance measurements with additional test cases. To this end, any 
identified further development (e.g., missing API endpoints, performance improvements or missing 
functionality) will be carried out based on the functional, integration and performance tests. 
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Appendix A Software security and AI/ML implementations 

A.1 Adversarial machine learning 

This table provides a detailed overview of adversarial machine learning modes, objectives and 
mitigation techniques. In the following table, we refer to white box conditions to designate the 
situation where the adversary gets to unaltered training data, feature values of each sample, the 
algorithm and finally the parameters of the trained model.  Conversely, black box conditions refer to 
the situation where the adversary has no access or knowledge over each of these elements. 

 

Attack Mode 
name 

Principle, 
Objective, and 
targeted AI/ML 
types. 

Realization, 
implementation 

Mitigation and limits 

Model stealing 
in white box 
conditions 

Collect the model 
elements in 
cleartext on the 
execution memory 
or cold storage. 

  

Get the model 
parameters (and 
associated used 
algorithm). 

  

Preferred AI/ML 
targets: The model 
is easier to access in 
Federated or any 
other distributed AI 
schemes, where the 
model is present in 
locations controlled 
by the adversary.  

  

Memory introspection, 
File access violation  

Confidential computing as 
offered by TEE (e.g., Intel’s 
SGX), memory segregation 
techniques (from VM or 
middleware, model 
obfuscation, Strict file access 
control management.) 

The mitigation limits are the 
incurred performance costs and 
the technical implications (e.g., 
SGX enclave leverage 
conditions.) 

One can view all mitigations as 
turning white box conditions 
into black box conditions. 

Model stealing 
in black box 
conditions 

Brute force probing 
to re-construct an 
equivalent similar 
model.  

  

Preferred AI/ML 
targets: MaaS used 
by licensed users.   

  

With no possible access 
to the model, the 
adversary probes the 
model to infer the 
missing data (model 
parameters).  

  

A different path is to 
divert the training data 
(during the training 
stage which can be 
facilitated by regular 
retraining schemes) for 

Detection of brute force 
probing (identification of the 
request sender and request 
pattern monitoring). 

  

Over-complexify the model to 
decrease the return on 
investment of the model re-
construction.  

  

Protection of the training data 
transfer software and 
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Attack Mode 
name 

Principle, 
Objective, and 
targeted AI/ML 
types. 

Realization, 
implementation 

Mitigation and limits 

elaborating a “similar” 
model, leveraging the 
transferability principle. 

transport. 

Membership 
Inference (MI)  

Principle: In all ML, 
training data show 
the highest score 
compared to 
unknown sample 
data. 

  

  

  

Preferred AI/ML 
targets:  

Overfitted MaaS 
operated mode. 
Inclination to 
Security or Privacy-
sensitive training 
data.  

Create a Membership 
inference network 
interfaced with the 
attacked network and 
capable to classify if a 
probing data is part of 
the training data of the 
target model (based on 
classification scores).  

  

Conditions: Prior 
knowledge of the 
algorithm in use. 
Overfitted networks are 
easier to MI attack. 

Avoid model overfitting by 
Dropout (fitted for deep neural 
networks only), consisting in 
edge removal-cleansing. 

  

  

  

  

Avoid model overfitting by 
model Stacking (fitted for any 
other ML types), based on 
Ensemble learning (multiple 
and hierarchical ML)  

  

  

Training 
data poisoning 

Contamination of 
the training data to 
mis-lead the 
classifier-predictor.  

  

Preferred AI/ML 
targets: On-the-fly 
retrained models 
are exposed.  

  

  

  

A corpus of publications 
and associated research 
based on statistics and 
data analytics, spans 
over different types of 
poisoning (e.g., targeted 
Clean label, poisoning 
GAN, label flipping and 
regression attacks) 
which all elaborate ad 
hoc poisoning samples to 
degrade classifier 
accuracy. 

  

Elaborated poisoning 
attacks can be referred 
as Backdoor attacks 
where the attackers 
carve “triggers” which 
can be sticked on any 
clean sample for its 
poisoning. More 
advanced research  brew 
easier to operate 
triggerless backdoors, 

Poison detection is 
probabilistic, not a certain 
process. Each type of poisoning 
attacks has its own attack-
bound defence (i.e., Deep-kNN, 
Certified Defense, label 
sanitization and linear 
regression iterative residual 
extraction. Recent works 
develop generic and attack-
type agnostic defences.  
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Attack Mode 
name 

Principle, 
Objective, and 
targeted AI/ML 
types. 

Realization, 
implementation 

Mitigation and limits 

exploiting neurons 
dropped out 
(statistically) to prevent 
overfitting.  

Evasion Construct test 
samples which 
mislead the 
classifier-predictor. 

  

Preferred AI/ML 
targets: Evasion 
attacks are not 
specific and apply to 
any AI/ML. They are 
however greatly 
eased and more 
efficient with a 
model that exposes 
inner working 
elements. However, 
pure black box 
attacks on MaaS 
are also possible. 

  

Another corpus of 
publications details 
most-used evasion 
attacks. Evasion attacks 
are specific and trimmed 
to classifier type (e.g., 
linear, convex-inducing, 
SVM).  

Evasion attacks 
efficiency is related to 
the degree of knowledge 
of the attacker on the 
feature space, the model 
(learning classifier and 
parameters), the 
decision function or the 
label outputs on 
adversary samples. 
Hence, gradient-based or 
surrogate-type attacks 
require the model 
gradients (white box or 
by reconstruction), the 
confidence score attacks 
which estimate the 
model gradients by 
analysing the scores and 
the less accurate hard 
label attacks (e.g., 
boundary attack) which 
only needs the label 
outputs.    

Empirical defences, inspired by 
experience and carving 
successful attack vectors. 
Adversarial training retrains 
the attacked model with the 
successful attack vectors with 
the correct label. This arm race 
is endless and leads to 
efficiency degradation.  

Ensemble, Cascade, Robust 
Optimization and Spectral 
normal methods have been 
developed with respect to the 
quality of the adversarial 
sample sets, the   maintenance 
of the classifier efficiency and 
performance.  

Gradient masking and gradient 
obfuscation are not an 
Adversarial Training defence 
per se and frustrates the 
generation of stealthy vectors 
by concealing the model 
gradients. 

Input cleansing-denoising are 
statistics-based methods 
removing adversary-generated 
noise. Sometime fed downhill, 
detection methods infer 
adversarial vectors by 
analysing the classification 
before and after denoising. 
Else, detection methods are 
autonomous and use raw 
statistics from various sampling 
probes over pipeline. Both input 
denoising and detection 
methods can be implemented 
seamlessly on pre-running 
models.  

Null Class is a specific defence 
for outliers (samples located 
out of the normal data 
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Attack Mode 
name 

Principle, 
Objective, and 
targeted AI/ML 
types. 

Realization, 
implementation 

Mitigation and limits 

distribution bounds) to short 
cut the classification into the 
null class thus avoiding mis-
prediction.   

Table 6: Adversarial machine learning 

A.2 Software security techniques for protecting AI/ML software  

This table summarizes the security contributions brought by software security in AI/ML solutions. 

Attack description Software security mitigation. Implied techniques. 

Evasion attack through model page 
tampering 

Encryption of the model and decryption and processing 
in token provisioned trusted platforms.  

Placement of the model in confidential computing 
environment (Trusted Execution Environment) 

Evasion attack by model analysis for 
attack vector 

Encryption of the model and decryption and processing 
in token provisioned trusted platforms. 

Placement of the model in confidential computing 
environment (Trusted Execution Environment) 

Evasion attack by model inference code 
tampering 

Inference code integrity verification.  

Software Integrity enforcement (Trusted Execution 
Environment) 

Poisoning by malicious source-node 
(training sample) feed. 

Source-node authentication by identification label 
singularization and transmission. 

Poisoning by interception and 
modification of training sample in 
transit.  

Content authentication check prior processing of 
incoming training data. 

On both side (emitter and receiver), the ad hoc 
primitive-routine insertion.  

Poisoning by modification of training 
data at generation and at receipt (model 
location) by memory introspection 

Placement of the exposed software in confidential 
computing environment (Trusted Execution 
Environment). 

Poisoning by modification of training 
data at generation and at receipt (model 
location) by means of software 
modification (noise generation routine) 

Software run-time integrity verification. Establishment 
of a chain of trust between interacting components 
using these integrity reports. 

Tampering of distributed model 
algorithms or training data generation 
modules in distributed or federated 
layouts   

Singularization for identification, authentication and 
integrity remote verification. Centralized execution 
monitoring and control of each deployed process.  

Table 7: Software security in AI/ML solutions 

[end of document] 


